
Differential Equations& Mathematica
©1999 Bill Davis and Jerry Uhl

Produced by Bruce Carpenter Published by Math Everywhere, Inc.

www.matheverywhere.com

DE.04 Modern DiffEq Issues
Basics

B.1) Euler's method of faking the plot of the solution of a

differential equation and how it highlights the fundamental

issue of diffeq
Here's an innocent-looking differential equation:
 y'@xD = y@xD H4 Cos@xD - y@xDL
 with y@0D = starter= 1.
If you want to get a plot of the solution, you ask Mathematica for a
formula for the solution:

Clear @x, y D;
starter = 1;

DSolve @8y ¢@xD == y@xD H4 Cos@xD2 - y@xDL, y @0D == starter <, y @xD, x D

99y@xD ® -
E2 x +Sin @2 x D

��
-1 + Ù 1 â0 - Ù E2 x +Sin @2 x D âx

==

This output is useless.
Try as it might, Mathematica could not come up with a useful formula
for the solution y@xD. But there is a way to fake the plot of the solution
even when you can't get a formula for it.
It comes from this code which you can play with.
Don't worry about the individual statements in the code right
now.

a = 0;
b = 5;
starter = 1.7;
y@aD = starter;
beginner = 8a, y @aD<;

Clear @x, y, next, jump, iterations, point, k D;

jump @iterations_ D : =
b - a

��������������������������������
iterations

;

next @8x_, y_ <, iterations_ D : =

8x, y < + jump @iterations D 81, y H4 Cos@xD2 - yL<;
point @0, iterations_ D = beginner;
point @k_, iterations_ D : =

point @k, iterations D = N@next @point @k - 1, iterations D, iterations DD;
Clear @Euler D;
Euler @iterations_ D : = Show@Graphics @8Thickness @0.01 D, Red,

Line @Table @point @k, iterations D, 8k, 0, iterations <DD<D,
PlotRange ® All, Axes ® True,
AxesOrigin ® beginner, AxesLabel ® 8"x", "Euler fake" <,
PlotLabel ® iterations " iterations", DisplayFunction ® Identity D;

primitive = Show@Euler @10D, DisplayFunction ® $DisplayFunction D;

1 2 3 4 5 x

0

1

2

3

Euler fake10 iterations

A primitive stick figure resulting from 10 iterations.
Here's what you get with 20 iterations:

better = Show@Euler @20D, DisplayFunction ® $DisplayFunction D;

1 2 3 4 5
x

1

1.5

2

2.5

3

3.5

Euler fake 20 iterations

50 iterations:
evenbetter = Show@Euler @50D, DisplayFunction ® $DisplayFunction D;

1 2 3 4 5
x

1

1.5

2

2.5

3

3.5

Euler fake 50 iterations

100 iterations:
darngood = Show@Euler @100D, DisplayFunction ® $DisplayFunction D;

1 2 3 4 5
x

1

1.5

2

2.5

3

3.5

Euler fake 100 iterations

Notice that the last two plots are almost the same.
This is your signal that they are both reasonably good fake plots of the
solution of the differential equation.

Show@GraphicsArray @88primitive, better <, 8evenbetter, darngood <<DD;

12345x11.522.533.5
Euler fake50 iterations

12345x11.522.533.5
Euler fake100 iterations

12345x01
23

Euler fake10 iterations

12345x11.522.533.5
Euler fake20 iterations

The more iterations you use, the better the fake plot of the solution of
the given differential equation.

DE.04.B1

áB.1.a)

Here is the exponential differential equation
 y'@xD = 0.3 y@xD
 with y@0D = 4
and a formula for its solution:

thisr = 0.3;
thisstarter = 4;
Clear @x, y, r, starter D;
solution = DSolve @8y ¢@xD == r y @xD, y @0D == starter <, y @xD, x D �.

8r ® thisr, starter ® thisstarter <;
y@x_D = y@xD �. solution P1T

4 E0.3 x

and a plot for 0£ x £ 8:
realplot =

Plot Ay@xD, 8x, 0, 8 <, PlotStyle ® 88Blue, Thickness @0.015 D<<,

PlotRange ® All, AspectRatio ®
1

�����������������������������������
GoldenRatio

, AxesLabel ® 8"x", "" <E;

2 4 6 8
x

10

20

30

40

Compare the Euler fake plots of the solution with the true plot.
Discuss what you see.

áAnswer:

Copy, paste, and edit the code used above to get a Euler faker of a plot

of the solution of the differential equation

 y'@xD = 0.3 y@xD
 with y@0D = 4

and show the fake plots together with the plot of the true solution.
a = 0;
b = 8;

81

starter = 4;
y@aD = starter;
beginner = 8a, y @aD<;
Clear @x, y, next, jump, iterations, point, k D;

jump @iterations_ D : =
b - a

��������������������������������
iterations

;

next @8x_, y_ <, iterations_ D : = 8x, y < + jump @iterations D 81, 0.3 y <;

point @0, iterations_ D = beginner;
point @k_, iterations_ D : =

point @k, iterations D = N@next @point @k - 1, iterations D, iterations DD;

Clear @Euler D;
Euler @iterations_ D : = Show@Graphics @8Thickness @0.01 D, Red,

Line @Table @point @k, iterations D, 8k, 0, iterations <DD<D,
PlotRange ® All,
Axes ® True, AxesOrigin ® beginner, AxesLabel ® 8"x", "" <,
PlotLabel ® iterations " iterations", DisplayFunction ® Identity D;

rough = Show@realplot, Euler @10D, PlotLabel ® "10 iterations",
DisplayFunction ® $DisplayFunction D;

2 4 6 8
x

10

20

30

40

10 iterations

Step up the number of iterations to 20:
better = Show@realplot, Euler @20D,

PlotLabel -> "20 iterations",
DisplayFunction -> $DisplayFunction D;

2 4 6 8
x

10

20

30

40

20 iterations

Step up the number of iterations to 100:
evenbetter = Show@realplot, Euler @100D,

PlotLabel -> "100 iterations",
DisplayFunction -> $DisplayFunction D;

2 4 6 8
x

10

20

30

40

100 iterations

Step up the number of iterations to 400:
darngood = Show@realplot, Euler @400D,

PlotLabel -> "400 iterations",
DisplayFunction -> $DisplayFunction D;

2 4 6 8
x

10

20

30

40

400 iterations

To get the full effect, grab all four plots and animate
running forward at a fairly slow speed.

Right you are, governor.

The more iterations you use, the better the Euler fake plot you get.

One more peek:
Show@GraphicsArray @88rough, better <,

8evenbetter, darngood <<DD;

2 4 6 8 x10
20
30
40
100 iterations

2 4 6 8 x10
20
30
40
400 iterations

2 4 6 8 x10
20
30
40

10 iterations

2 4 6 8 x10
20
30
40

20 iterations

This is good stuff.

áB.1.b) The advantage Euler's method gives you

What is the big advantage you get from Euler's method?
áAnswer:

You get a reasonably good plot of a solution even though you might

not be able to come up with a formula for the solution.

This is a big, big plus for you.

áB.1.c) The fundamental issue of diffeq

In Euler's method, you are given a diffeq
 y'@xD = f @x, y@xDD
 with y@0D = b, a given number
You run Euler's and get a nice approximate plot of the solution
starting at 80, b<.
How does this illustrate the fundamental issue of diffeq?

áAnswer:

In the words of the great American mathematician Peter Lax:

"Every differential equation has a solution and . . . this solution is

uniquely determined by initial data [on y@0D]."
áB.1.d) The idea behind Euler's faker

Try to explain why Euler's method works.
áAnswer:

DE.04.B1

Here is a differential equation

 y'@xD = Sin@xD y@xD
 with y@0D = 2

and a formula for its solution:
starter = 2;
Clear @x, y D;
solution = DSolve @8y ¢@xD == Sin @xD y@xD, y @0D == starter <, y @xD, x D;
y@x_D = y@xD �. solution P1T

2 E1-Cos@xD

and a plot for 0 £ x £ 5:
realplot = Plot Ay@xD, 8x, 0, 5 <, PlotStyle ® 88Blue, Thickness @0.02 D<<,

PlotRange ® All, AspectRatio ®
1

�����������������������������������
GoldenRatio

, AxesLabel ® 8"x", "" <E;

1 2 3 4 5
x

4

6

8

10

12

14

Now look at the Euler faker coming from 8 iterations:
a = 0;
b = 5;
y@aD = starter;
beginner = 8a, y @aD<;
Clear @x, y, next, jump, iterations, point, k D;

jump @iterations_ D : =
b - a

��������������������������������
iterations

;

next @8x_, y_ <, iterations_ D : = 8x, y < + jump @iterations D 81, Sin @xD y<;

point @0, iterations_ D = beginner;
point @k_, iterations_ D : =

point @k, iterations D = N@next @point @k - 1, iterations D, iterations DD;

Clear @Euler D;
Euler @iterations_ D : = Show@Graphics @8Thickness @0.01 D, Red,

82

Line @Table @point @k, iterations D, 8k, 0, iterations <DD<D,
PlotRange ® All,
Axes ® True, AxesOrigin ® beginner, AxesLabel ® 8"x", "" <,
PlotLabel ® iterations " iterations", DisplayFunction ® Identity D;

veryrough = Show@realplot, Euler @8D, PlotLabel ® "8 iterations",
DisplayFunction ® $DisplayFunction D;

1 2 3 4 5
x

4

6

8

10

12

14

8 iterations

Not a very good fake, but this plot exposes what the faker does.

You can see that the faker actually moves by generating a list of points

and moving on straight line segments that connect the points. Here are

the points:
Clear @fakepoints, fakepointplot D;
fakepoints @iterations_ D : =

Table @point @k, iterations D, 8k, 0, iterations <D;
fakepointplot @iterations_ D : =

ListPlot @fakepoints @iterations D, PlotStyle ® 8PointSize @0.03 D<,
AxesOrigin ® 80, 0 <, DisplayFunction ® Identity D;

Show@realplot, fakepointplot @8DD;

1 2 3 4 5
x

4

6

8

10

12

14

The faker connects these points with line segments:
Show@realplot, Euler @8D, fakepointplot @8D,

PlotLabel ® "8 iterations" D;

1 2 3 4 5
x

4

6

8

10

12

14

8 iterations

When you step up the iteration number, you shorten the jump between

successive points:
Show@realplot, Euler @20D, fakepointplot @20D,

PlotLabel ® 20 iterations D;

1 2 3 4 5
x

4

6

8

10

12

14

20 iterations

Show@realplot, Euler @50D, fakepointplot @50D,
PlotLabel ® 50 iterations D;

1 2 3 4 5
x

4

6

8

10

12

14

50 iterations

Show@realplot, Euler @200D, fakepointplot @200D,
PlotLabel ® 200 iterations D;

1 2 3 4 5
x

4

6

8

10

12

14

200 iterations

So far, so good.

The real question that remains is:

Why does the fake curve get better and better as you increase the

number of iterations?

To answer this, look at the code that generates the fake points:

 next@8x, y<, iterationsD =

 8x, y< + jump@iterationsD 81, Sin@xD y<;
 point@k, iterationsD =

 N@next@point@k - 1, iterationsD, iterationsDD.
This code tells you that once the Euler faker has settled on a point

8x, y<, then it moves off that point with the same growth rate as the

solution of the differential equation

 y'@xD = Sin@xD y@xD
that passes through that point. So the big differences between the true

plot and the fake plot is:

® As x advances, the actual solution y@xD updates its growth rate y'@xD
instantaneously.

® But the fake waits for a while to update the growth rate, updating its

growth rate only at each fake point.

DE.04.B1

When you use a small jump, then you can expect the growth rate of the

fake to be nearly the same as the actual growth rate of the function.

To get a small jump on a plotting interval@a, bD, you use a high

iteration number because

 jump@iterationsD = b-a���������������������iterations.

This is why high iteration numbers usually give better results than low

iteration numbers.

áB.1.e) The person behind the idea

Say a little bit about the great Swiss mathematician Leonhard Euler,
1707-1783, who originally came up with the idea of faking the plots
of solutions of differential equations.

áAnswer:

Euler (pronounced "Oiler") was certainly one of the greatest

mathematical scientists of all time. In addition to his advanced work in

geometry, he wrote the first accurate and complete treatise on calculus.

Along the way, he introduced the symbols

 e, p, and i =
�!!!!!!

-1

and the abbreviations for Sine, Cosine, Tangent, and the other trig

functions. Even the notation f @xD owes its life to the fertile mind of

Euler.

Over and above his mathematics, he had time to take up physics,

astronomy, hydrodynamics, optics, electricity, magnetism, ship

building, geographical maps, medicine, theology, and oriental

languages. Even though he became blind 12 years before his death,

nearly half his published works were written during the time he was

83

blind. Not one to neglect the social side of life, Euler spent many years

with friends in the famous court of Catherine I in St. Petersburg,

Russia.

B.2) Euler's faker and Mathematica's faker, NDSolve

Programmed into Mathematica is an instruction called NDSolve that
will accomplish for you everything that Euler's method did for faking
the plot of a solution of a differential equation. And there's an added
plus:
You don't have to screw around with setting the number of iterations.
Here's the NDSolve instruction working to get an excellent fake plot for
0 £ x £ 6 of the differential equation
 y'@xD = 3.2 Sin@y@xDD - 0.3 x2
 with y@0D = 0.2:

a = 0;
b = 4;
starter = 0.2;
Clear @solution, x, y, fakey D;
solution = NDSolve @

8y ¢@xD == 3.2 Sin @y@xDD - 0.3 x 2 , y @0D == starter <, y @xD, 8x, a, b <D;
fakey @x_D = y@xD �. solution P1T;

masterfakeplot =

Plot Afakey @xD, 8x, a, b <, PlotStyle ® 88Blue, Thickness @0.01 D<<,

AxesLabel ® 8"x", "y @xD" <, AxesOrigin ® 8a, starter <, PlotRange ® All,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, PlotLabel ® "Master forgery" E;

1 2 3 4
x

0.5

1

1.5

2

2.5

y@xD Master forgery

The NDSolve instruction is just waiting for you to use it.

áB.2.a)

Discuss the mathematical principles behind the NDSolve instruction.
áAnswer:

The mathematical principles behind the NDSolve instruction are the same

as the mathematical principles behind Euler's method. Except in the

case of the NDSolve instruction, extra features typical of professionally

written software are included.

You'll hear more about these extra features later.

áB.2.b)

Look at this:
a = 0;
b = 4;
starter = 0.2;
Clear @solution, x, y, fakey D;

solution = NDSolve @
8y ¢@xD == 3.2 Sin @y@xDD - 0.3 x 2 , y @0D == starter <, y @xD, 8x, a, b <D;

fakey @x_D = y@xD �. solution P1T
InterpolatingFunction @880., 4. <<, <>D@xD

What does the output mean?
áAnswer:

This output reflects the fact that NDSolve first produces a bunch of points

and then strings them together with an interpolating function -- just as

Euler's method does. The formula for this interpolating function is not

available, but you can plot it:
masterfakeplot =

Plot Afakey @xD, 8x, a, b <, PlotStyle ® 88Blue, Thickness @0.01 D<<,

AxesLabel ® 8"x", "y @xD" <, AxesOrigin ® 8a, starter <, PlotRange ® All,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, PlotLabel ® "Master forgery" E;

1 2 3 4
x

0.5

1

1.5

2

2.5

y@xD Master forgery

áB.2.c)

But isn't the actual formula always better than a fake?
áAnswer:

It all depends on what you want to do.

If what you want is a plot of the solution, then the fake should be as

good as the actual formula.

If you want to do theoretical analysis of the true solution, then the

actual formula is what you want. The only trouble is that the actual

formula is available only in special situations; the fake is nearly always

available.

áB.2.d)

Does this mean that you should give up on Euler's method?
áAnswer:

Hell no!

For serious practical situations, you want something better. But as a

theoretical tool to use to unlock more secrets of calculus, Euler's

method is just the ticket.

DE.04.B1®B3

B.3) Reading the diffeq through flow plots

áB.3.a.i)

Here's an old friend, the logistic differential equation:
Clear @diffeq, y, t, f, starter D;
b = 10;

f @t_, y_ D = 0.4 y J1 -
y
�����
b
N;

diffeq = 8y' @t D == f @t, y @t DD, y @0D == starter <
9y ¢@t D == 0.4 J1 -

y@t D
��������������

10
N y@t D, y @0D == starter =

Here comes a plot of the solution of this differential equation
corresponding to given starter data y@0D = 0.7:

diffeq

9y ¢@t D == 0.4 J1 -
y@t D
��������������

10
N y@t D, y @0D == starter =

Clear @yD;
starter = 0.7;
endtime = 35;
y@t_ D = y@t D �. NDSolve @diffeq, y @t D, 8t, 0, endtime <DP1T;

solutionplot = Plot Ay@t D, 8t, 0, endtime <, PlotRange ® All,

PlotStyle ® 88Thickness @0.01 D, Red <<, AxesLabel ® 8"t", "y @t D" <,

AspectRatio ®
1
�����
2
E;

5 10 15 20 25 30 35
t

4

6

8

10

y@tD

Now look at this:
scale = 6;
tangentflow =

Table AArrow @81, f @t, y @t DD<, Tail ® 8t, y @t D<, VectorColor ® Blue,

ScaleFactor ® scale, HeadSize ® 1.5 D, 9t, 0, endtime,
endtime
�����������������������

20
=E;

84

both = ShowAtangentflow, solutionplot, PlotRange ® All,

Axes ® True, AxesLabel ® 8"t", "y @t D" <, AspectRatio ®
1
�����
2
E;

10 20 30 40
t

4

6

8

10

12

y@tD

Describe what you see and explain why you see it.
áAnswer:

Take another look:
Show@both D;

10 20 30 40
t

4

6

8

10

12

y@tD

What you see is the solution plot being guided by its tangent vectors.

This came out this way for the same reason that Euler's method works.

To wit: The vectors plotted are scaled versions of

 81, f @t, y@tD< with tails at 8t, y@tD<.
Because y@tD is a solution of y'@tD = f @t, y@tDD,
these vectors are the same as

 81, y'@tD< with tail at 8t, y@tD<.
But the slope of

 81, y'@tD< is y'@tD,

which is the instantaneous growth rate of y@tD and that's the reason

these are tangent vectors.

áB.3.a.ii) Flow plots and corks

Look at this:
scalefactor = 1.1;

flowplot = Table AArrow @scalefactor 81, f @t, y D<, Tail ® 8t, y <,

VectorColor ® Blue, ScaleFactor ® scalefactor, HeadSize ® 0.8 D,

9t, 0, endtime,
endtime
�����������������������

15
=, 9y, 0, 1.4 b,

b
�����
8
=E;

Show@solutionplot, flowplot D;

5 10 15 20 25 30 35
t

2

4

6

8

10

12

14
y@tD

This shows the solution plotted in part i) going with the flow.
What else can you see from this plot?

áAnswer:

Take another look:
Show@solutionplot, flowplot D;

5 10 15 20 25 30 35
t

2

4

6

8

10

12

14
y@tD

Think of it this way:

Each plotted vector is tangent to the solution plot that goes through its

tail. Think of the whole t y-plane as fluid flowing in the directions

indicated by the tangent vectors plotted above. The plot of a solution is

what you get when you drop a cork into the flow and let it float along.

This way you can use your eyes to see how solutions plot out:
Show@flowplot, Axes ® True D;

5 10 15 20 25 30 35

2

4

6

8

10

12

14

When you start with

 y@0D = starter between 0 and 10,

the corresponding solution increases and eventually snuggles onto a

straight line. When you start with

 y@0D = starter bigger than 10,

then the corresponding solution decreases and eventually snuggles onto

the same straight line.

Check it out for a couple of other starting points:
Clear @yD;
diffeq

9y ¢@t D == 0.4 J1 -
y@t D
��������������

10
N y@t D, y @0D == 0.7 =

Clear @y1, y2, y3, y, t D;
8starter1, starter2, starter3 < = 83, 7, 13 <;
y1@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter1, y @t D, 8t, 0, endtime <DP1T;
y2@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter2, y @t D, 8t, 0, endtime <DP1T;
y3@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter3, y @t D, 8t, 0, endtime <DP1T;

DE.04.B3

solutionplots = Plot A8y1@t D, y2 @t D, y3 @t D<, 8t, 0, endtime <,

PlotStyle ® 88Thickness @0.01 D, Red <<, AspectRatio ®
1

�����������������������������������
GoldenRatio

,

PlotRange ® All, AxesLabel ® 8"t", "" <E;

5 10 15 20 25 30 35
t

6

8

10

12

See these solutions go with the flow:
Show@solutionplots, flowplot D;

5 10 15 20 25 30 35
t

2

4

6

8

10

12

14

Math happens.

Play with other starting values.

áB.3.b.i) More flow plots

Here's a new differential equation:
Clear @diffeq, y, t, f, starter D;
b = 10;
f @t_, y_ D = y - 0.5 t;
diffeq = 8y' @t D == f @t, y @t DD, y @0D == starter <

8y ¢@t D == -0.5 t + y@t D, y @0D == starter <
And its flow plot:

scalefactor = 0.5;
8ylow, yhigh < = 8-10, 10 <;
8tlow, thigh < = 80, 8 <;

85

flowplot = Table AArrow @81, f @t, y D<,

Tail ® 8t, y <, VectorColor ® Blue, ScaleFactor ® scalefactor D,

9t, tlow, thigh,
thigh - tlow
�����������������������������������

12
=, 9y, ylow, yhigh,

yhigh - ylow
�����������������������������������

8
=E;

ShowAflowplot, Axes ® True, AxesLabel ® 8"t", "y" <,

AspectRatio ®
1

�����������������������������������
GoldenRatio

E;

2 4 6 8
t

-15

-10

-5

5

10

15

y

Interpret this flow plot.
áAnswer:

Take another look:

ShowAflowplot, Axes ® True, AxesLabel ® 8"t", "y" <, AspectRatio ®
1
�����
2
E;

2 4 6 8
t

-15

-10

-5

5

10

15

y

From this flow plot, you can spot at least two types of solutions of the

differential equation:
diffeq

8y ¢@t D == -0.5 t + y@t D, y @0D == starter <

Here is a sample of each shown with the flow plot:
Clear @y1, y2, y, t D;
8starter1, starter2 < = 80.2, 0.6 <;
endtime = 4.5;

y1@t_ D = y@t D �.
NDSolve @diffeq �. starter ® starter1, y @t D, 8t, 0, endtime <DP1T;

y2@t_ D = y@t D �.
NDSolve @diffeq �. starter ® starter2, y @t D, 8t, 0, endtime <DP1T;

solutionplots = Plot @8y1@t D, y2 @t D<, 8t, 0, endtime <,
PlotStyle ® 88Thickness @0.01 D, Red <<, DisplayFunction ® Identity D;

ShowAsolutionplots, flowplot, Axes ® True, AxesLabel ® 8"t", "y" <,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, DisplayFunction ® $DisplayFunction E;

2 4 6 8
t

-20

-10

10

y

B.4) Systems of interacting differential equations:

 The predator-prey model
This predator-prey model was orginally proposed and studied by
Volterra in 1926 in an effort to explain the oscillatory levels of
certain fish harvests in the Adriatic Sea.

Here's the idea:
Two species coexist in a closed environment. One species, the
predator, feeds on the other, the prey. There is always plenty of food
for the prey, but the predators eat nothing but the prey.
Put
 pred@tD = population of predators at timet.
Put
 prey@tD = population of prey at timet.

It's reasonable to assume that there are positive constants a and b such
that:
 prey'@tD = a prey@tD - b prey@tD pred@tD
because the abundance of food for the prey allows the birth rate of the
prey to be proportional to their current number, and the death rate of
prey is proportional to both the current number of prey and the current
number of predators.

It also makes some sense to assume that there are positive constants c
and d such that:
 pred'@tD = -c pred@tD + d pred@tD prey@tD
because it's reasonable to assume that the death rate of the predators is
likely to be proportional to the current population of predators and that
the birth rate of the predators is proportional to both the current
number of the predators and the size of the food supply (the prey).
This gives you two simultaneous differential equations
 prey'@tD = a prey@tD - b prey@tD pred@tD,
 pred'@tD = -c pred@tD + d pred@tD prey@tD.

DE.04.B3®B4

Simultaneous differential equations are just the ticket when you want to
see how one process interacts with another.

áB.4.a)

Examine what happens for the sample choice of proportionality
constants
 a= 0.7, b = 0.3, c = 0.44, and d= 0.08
with the prey starting off with a population of 4.0 units and the
predators starting out with a population of 1.2 units.

Here the units could be thousands or millions so that a fractional
population can make sense.

áAnswer:

Here is a plot of Mathematica's faker of the prey population as a

function of time t for the first 50 time units:
endtime = 50;
preystarter = 4.0;
predstarter = 1.2;
a = 0.7;
b = 0.3;
c = 0.44;
d = 0.08;
Clear @pred, prey, t D;
approxsolutions = NDSolve @8prey ¢@t D == a prey @t D - b prey @t D pred @t D,

pred ¢@t D == -c pred @t D + d pred @t D prey @t D,
prey @0D == preystarter, pred @0D == predstarter <,

8prey @t D, pred @t D<, 8t, 0, endtime <D;
pred @t_ D = pred @t D �. approxsolutions P1T;
prey @t_ D = prey @t D �. approxsolutions P1T;

preyplot =

Plot Aprey @t D, 8t, 0, endtime <, PlotStyle ® 88Blue, Thickness @0.01 D<<,

AxesLabel ® 8"t", "prey" <, AspectRatio ®
1

�����������������������������������
GoldenRatio

E;

86

10 20 30 40 50
t

4

6

8

10

prey

Hey! A cyclical pattern.

And the predator population as a function of time t:
predatorplot =

Plot Apred @t D, 8t, 0, endtime <, PlotStyle ® 88Red, Thickness @0.01 D<<,

AxesLabel ® 8"t", "predators" <, AspectRatio ®
1

�����������������������������������
GoldenRatio

E;

10 20 30 40 50
t

1.5

2.5

3

3.5

4

predators

Another cyclical pattern. Here they are together:
The plot of the prey population is thicker than the plot of the predator

population.

both = Plot A8prey @t D, pred @t D<, 8t, 0, endtime <,

PlotStyle ® 88Blue, Thickness @0.01 D<, 8Red, Thickness @0.01 D<<,
AxesLabel ® 8"t", "" <,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, DisplayFunction ® Identity E;

Show@both, DisplayFunction ® $DisplayFunction D;

10 20 30 40 50
t

2

4

6

8

10

Look at those populations interacting with each other.

áB.4.b)

Here are the plots of both populations shown together again:
Show@both, DisplayFunction ® $DisplayFunction D;

10 20 30 40 50
t

2

4

6

8

10

Discuss the relationships between the curves.
áAnswer:

Cyclic oscillations of both populations are evident as all get out.

Feast your eyes on the vivid relationship between the crests and dips of

the predator population and those of the prey population! The cycles

are slightly out of sync. When you think about it, they should be

slightly out of sync. Look again:
Show@both, DisplayFunction ® $DisplayFunction D;

10 20 30 40 50
t

2

4

6

8

10

When there are enough prey to sustain strong predator growth, the

predators begin to grow so much that they outstrip their food supply.

This puts both populations into a decline until the point at which the

predators are not a powerful menace; then the prey become numerous

enough to support strong predator growth. The cycles go on and on.

áB.4.c)

Estimate the length of one cycle in time units.
Plot one cycle, two cycles, three cycles, and four cycles.

áAnswer:

Put in horizontal lines shooting out from the vertical axis reflecting the

information that

 pred@0D = 0.9 and prey@0D = 4.
bothwithlines = Plot A8prey @t D, pred @t D<, 8t, 0, endtime <,

PlotStyle ® 88Blue, Thickness @0.01 D<, 8Red, Thickness @0.01 D<<,

AxesLabel ® 8"t", "" <, AspectRatio ®
1

�����������������������������������
GoldenRatio

,

Epilog ® 8Line @880, predstarter <, 8endtime, predstarter <<D,

Line @880, preystarter <, 8endtime, preystarter <<D<E;

DE.04.B4

10 20 30 40 50
t

2

4

6

8

10

A closer look:
Show@bothwithlines, PlotRange ® 880, 15 <, Automatic <D;

2 4 6 8 10 12 14
t

2

4

6

8

10

One cycle is about 12 time units by eyeball estimate.

Use Mathematica to improve on this:
FindRoot @prey @t D == preystarter, 8t, 12 <D

8t ® 11.8355 <

Check:
FindRoot @pred @t D == predstarter, 8t, 12 <D

8t ® 11.8354 <

The eyeball was not so bad.

A plot of one cycle:
cycle = 12.2355;

one = Plot A8prey @t D, pred @t D<, 8t, 0, cycle <,

PlotStyle ® 88Blue, Thickness @0.01 D<, 8Red, Thickness @0.005 D<<,
AxesLabel ® 8"t", "" <, PlotRange ® 880, 4 cycle <, Automatic <,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, PlotLabel ® "one cycle" E;

87

10 20 30 40
t

2

4

6

8

10

one cycle

Two cycles:
two = Plot A8prey @t D, pred @t D<, 8t, 0, 2 cycle <,

PlotStyle ® 88Blue, Thickness @0.01 D<, 8Red, Thickness @0.005 D<<,
AxesLabel ® 8"t", "" <, PlotRange ® 880, 4 cycle <, Automatic <,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, PlotLabel ® "two cycles" E;

10 20 30 40
t

2

4

6

8

10

two cycles

Three cycles:
Plot A8prey @t D, pred @t D<, 8t, 0, 3 cycle <,

PlotStyle ® 88Blue, Thickness @0.01 D<, 8Red, Thickness @0.005 D<<,
AxesLabel ® 8"t", "" <, PlotRange ® 880, 4 cycle <, Automatic <,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, PlotLabel ® "three cycles" E;

10 20 30 40
t

2

4

6

8

10

three cycles

And four cycles:

Plot A8prey @t D, pred @t D<, 8t, 0, 4 cycle <,

PlotStyle ® 88Blue, Thickness @0.01 D<, 8Red, Thickness @0.005 D<<,
AxesLabel ® 8"t", "" <, PlotRange ® 880, 4 cycle <, Automatic <,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, PlotLabel ® "four cycles" E;

10 20 30 40
t

2

4

6

8

10

four cycles

To get the full effect, grab all four plots of the cycles,
align, animate and run forward slowly.

Nice excursion into mathematical ecology.

As William E. Boyce and Richard DiPrima point out in their book,

Elementary Differential Equations (Wiley, 1977), "Cyclic variations of

predator and prey as [predicted above] are often observed in nature."

In fact E.P. Odum [Fundamentals of Ecology, Saunders, 1953] was

able to use the fur catch records of the Hudson Bay Company from

1850 to 1930 to estimate the Canadian lynx and snowshoe hare

populations during these years. Odum's curves are not too different in

character from the curves you see above.

All mathematical ecologists agree that the predator-prey model is not

an end in itself, but is important as a tool in the quest for asking the

right questions.

áB.4.d)

Why all this fooling around with fake plots?
Wouldn't actual formulas for pred@tD and prey@tD be more convenient?

áAnswer:

It all depends on what you want to do.

If what you want is a plot, then the fake should be as good as the actual

formula.

If you want to do theoretical analysis of the true solution, then the

actual formula is what you want. The only trouble is that the actual

formula is available only in special situations; the fake is always

available.

In the case of the predator-prey model, the formulas so treasured in

old-fashioned math classes are not available.

Try it:
Clear @a, b, c, d, pred, prey, t D;
DSolve @8prey ¢@t D == a prey @t D - b prey @t D pred @t D,

pred ¢@t D == -c pred @t D + d pred @t D prey @t D, prey @0D == 4, pred @0D == 1<,
8prey @t D, pred @t D<, t D

8<

Mathematica failed to come up with formulas for pred@tD and prey@tD.
You can't chalk this up as a fault of Mathematica's, because no scientist

has ever succeeded in finding formulas for pred@tD and prey@tD. For the

predator-prey model, the fake is the only game in town.

áB.4.e)

Where do you go for further reading on predator-prey models?
áAnswer:

Predator-prey models have been (and still are) under heavy study by

biologists and mathematicians. For further reading, here are some good

places to begin:

1. E. Batschelet,Introduction to Mathematics for Life Scientists,
Springer-Verlag, 1979. (introductory and clear)

2. Peter Lax,Samuel Burstein and Anneli Lax, Calculus with Applications
and Computing,Springer-Verlag,1976. (serious mathematics)

DE.04.B4

3. J. D. Murray, Mathematical Biology,Springer-Verlag,1990 (serious
mathematics and serious biology).

4. William E. Boyce and Richard DiPrima, Elementary Differential
Equations, Wiley, 1977 (serious math although somewhat dated in

presentation)

áB.4.f)

What version of Euler's method underlies Mathematica's fake plots
above?

áAnswer:
None of the instructions below can be activated.

To fake a plot of the solution of y'@xD = f @x, y@xDD, Euler's method uses

 next@8x, y<D = 8x, y< + jump 81, f@x, yD<
 point@kD = N@next@point@k - 1DDD

To fake a plot of the solution of the simultaneous differential equations

 x'@tD = f @t, y@tD, x@tDD
 y'@tD = g@t, x@tD, y@tDD,
Euler's method uses:

 next@8t, x, y<D = 8t, x, y< + jump 81, f@t, x, yD, g@t, x, yD<
 point@kD = point@kD = N@next@point@k - 1DDD.

The fake points for x@tD as a function of t are fished out from the first

two slots of point@kD, and the fake points for y@tD as a function of t are

fished out from the first and the third slots of point@kD.
You could program it yourself, but why bother?

88

DE.04 Modern DiffEq Issues
Tutorials

T.1) Sensitive dependence on starter data

áT.1.a.i) Flow plots

Here's a simple differential equation:
Clear @diffeq, y, t, f, starter D;
b = 10;
f @t_, y_ D = y - 0.8 t;
setup =
Hdiffeq = 8y' @t D == f @t, y @t DD, y @0D == starter <L �� ColumnForm

y ¢@t D == -0.8 t + y@t D
y@0D == starter

And a flow plot:
endtime = 6;
scalefactor = 0.4;
8ylow, yhigh < = 8-4, 10 <;
8tlow, thigh < = 80, 10 <;

flowplot = Table AArrow @81, f @t, y D<, Tail ® 8t, y <,

VectorColor ® Blue, ScaleFactor ® scalefactor, HeadSize ® 0.8 D,

9t, tlow, thigh,
thigh - tlow
�����������������������������������

10
=, 9y, ylow, yhigh,

yhigh - ylow
�����������������������������������

8
=E;

ShowAflowplot, Axes ® True, AxesLabel ® 8"t", "y" <, AspectRatio ®
1
�����
2

,

PlotLabel ® setup P1, 1 TE;

2 4 6 8 10
t

-5

5

10

y y¢@tD == -0.8 t + y@tD

And see the plots of two solutions:

Clear @y1, y2, y3, t D;
8starter1, starter2 < = 80.79, 0.81 <;
endtime = 7;

y1@t_ D = y@t D �.
NDSolve @Hdiffeq �. starter -> starter1 L, y @t D, 8t, 0, endtime <D@@1DD;

y2@t_ D = y@t D �.
NDSolve @Hdiffeq �. starter -> starter2 L, y @t D, 8t, 0, endtime <D@@1DD;

solutionplots = Plot A8y1@t D, y2 @t D<, 8t, 0, endtime <,

PlotStyle ->

88Thickness @0.01 D, Red <<, AspectRatio ->
1

�����������������������������������
GoldenRatio

,

PlotRange -> 8ylow, yhigh <,

AxesLabel -> 8"t", "y @t D" <, DisplayFunction -> Identity E;

Show@solutionplots, flowplot, DisplayFunction -> $DisplayFunction D;

2 4 6 8 10
t

-4

-2

2

4

6

8

10
y@tD

What do folks mean when they talk about "sensitive dependence on
starter data?"

áAnswer:

You're looking at it.

Take another look:
Show@solutionplots, flowplot, DisplayFunction ® $DisplayFunction D;

2 4 6 8 10
t

-4

-2

2

4

6

8

10
y@tD

What you see are two solutions of:
diffeq

8y ¢@t D == -0.8 t + y@t D, y @0D == starter <

The starting points of the two solutions are almost the same; yet the

two solutions are totally different in character.

You gotta agree that small changes in the starting conditions can result

in big changes in solutions. This is exactly what folks mean when they

talk about senistive dependence on starting data.

áT.1.a.ii)

Do all differential equations exhibit sensitive dependence on starter
data?

áAnswer:

Not all of them.

Here's one that doesn't exhibit overly sensitive dependence on starter

data:
Clear @f, t, y D;
b = 10;
f @t_, y_ D = -y ;
setup =
Hdiffeq = 8y' @t D == f @t, y @t DD, y @0D == starter <L �� ColumnForm

y ¢@t D == -y@t D
y@0D == starter

And a flow plot:
endtime = 6;
scalefactor = 0.4;
8ylow, yhigh < = 8-4, 4 <;
8tlow, thigh < = 80, 8 <;

flowplot = Table AArrow @81, f @t, y D<, Tail ® 8t, y <,

VectorColor ® Blue, ScaleFactor ® scalefactor, HeadSize ® 0.6 D,

9t, tlow, thigh,
thigh - tlow
�����������������������������������

8
=, 9y, ylow, yhigh,

yhigh - ylow
�����������������������������������

6
=E;

DE.04.T1

ShowAflowplot, Axes ® True, AxesLabel ® 8"t", "y" <,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, PlotLabel ® setup P1, 1 TE;

2 4 6 8
t

-4

-2

2

4

y y¢@tD == -y@tD

The flow plot tells you to expect all solutions to the sucked onto the

t-axis.

Check it out:
Clear @y1, y2, y3, t D;
8starter1, starter2, starter3 < = 8-3.0, 2.0, 4.0 <;
endtime = thigh;
y1@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter1, y @t D, 8t, 0, endtime <DP1T;
y2@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter2, y @t D, 8t, 0, endtime <DP1T;
y3@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter3, y @t D, 8t, 0, endtime <DP1T;

solutionplots = Plot A8y1@t D, y2 @t D, y3 @t D<,

8t, 0, endtime <, PlotStyle ® 88Thickness @0.01 D, Red <<,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, PlotRange ® 8ylow, yhigh <,

AxesLabel ® 8"t", "y @t D" <, DisplayFunction ® Identity E;

Show@solutionplots, flowplot, PlotLabel ® setup P1, 1 T,
DisplayFunction ® $DisplayFunction D;

89

2 4 6 8
t

-4

-3

-2

-1

1

2

3

4
y@tD y¢@tD == -y@tD

If two solutions of this differential equation have nearby starting values

on y@0D, then the corresponding solutions will remain close to each

other forever.

This differential equation is nearly insensitive to starter data.

T.2) The drinking versus driving model: Using a diffeq to

analyze Bubba's toot
Calculus&Mathematica thanks pharmacokineticist

Professor Al Staubus of the College of Pharmacy at Ohio State University
and

Medical Doctor Jim Peterson of Urbana, Illinois
for help on this problem.

áT.2.a)

Here are some facts:
® A 12- ounce long neck beer contains 13.6 grams of alcohol.
® The typical human liver can eliminate 12 grams of alcohol per hour.
® In all states, if your body contains more than 1 gram of alcohol per
liter of body fluids, then you are too drunk to drive legally.
® In some states, if your body contains more than 0.8 grams of
alcohol per liter of body fluids, then you are too drunk to drive legally.
® Bubba weighs 187 pounds.
® A college-age male in good shape (as Bubba is) weighing
K kilograms has about 0.68 K liters of fluids in his body.
To estimate the number of liters of fluids in Bubba's body, you use:

Needs@"Miscellaneous`Units`" D
Convert @187 PoundWeight, KilogramWeight D

84.8217 KilogramWeight

Bubbafluids = 0.68 84.8217

57.6788

This is in liters.
Here is Bubba's plan for the big party:
He plans to drink plenty of beer at the party. But he is also worried
about his driver's license. So he comes up with the scheme:
He'll drink beer gradually at the rate of one 12- ounce long neck
every 10 minutes for the first hour; then he'll nurse one 12- ounce
beer every half hour for the next two hours. After all this beer, he'll
stop drinking and just sit around looking cool until he's sure his blood
alcohol concentration is down to a safe, legal level for driving.
Here is the function of time (in hours) that measures Bubba's intake
rate of alcohol in grams per hour and a plot for the first 5 hours:

beer = 13.6;
Clear @inrate, t D;
inrate @t_ D : = 6 beer �; 0 £ t < 1;
inrate @t_ D : = 2 beer �; 1 £ t < 3;
inrate @t_ D : = 0 �; 3 £ t;

Plot Ainrate @t D, 8t, 0, 5 <,

PlotStyle ® 88Thickness @0.01 D, YellowBrown <<, PlotRange ® All,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, AxesLabel ® 8"t", "inrate @t D" <E;

1 2 3 4 5
t

20

40

60

80

inrate@tD

Assuming Bubba's liver is normal, you can say the function of time (in
hours) that measures his elimination rate of alcohol in grams per hour
is:

Clear @outrate, t D;
outrate @t_ D = 12;

Use the NDSolve instruction to help give a plot of the function that
measures the alcohol (in grams) that will be found in Bubba's body
anytime during the first 9 hours.
Then give a plot of the function that measures the concentration of
alcohol in grams per liter in Bubba's body fluids.
Estimate how long Bubba will have to stay at the party before he
becomes a legal driver.

áAnswer:

Call the function that measures the alcohol (in grams) that will be

found in Bubba's body anytime during the first 8 hours by the name

 alcohol@tD.
Assuming Bubba has no residue from the night before, you know that

at the start of the party (t = 0),

 alcohol@0D = 0.

You also know that

 alcohol'@tD = inrate@tD - outrate@tD.
Here's the plot of alcohol@tD for the first 9 hours:

beer = 13.6;
Clear @inrate, outrate, t D;
inrate @t_ D : = 6 beer �; 0 £ t < 1;
inrate @t_ D : = 2 beer �; 1 £ t < 3;
inrate @t_ D : = 0 �; 3 £ t;
outrate @t_ D = 12;
a = 0;
b = 9;
starter = 0;

Clear @solution, t, y, alcohol D;
solution = NDSolve @

8y ¢@t D == inrate @t D - outrate @t D, y @0D == starter <, y @t D, 8t, a, b <D;
alcohol @t_ D = y@t D �. solution P1T;

Plot @

DE.04.T1®T2

alcohol @t D, 8t, a, b <, PlotStyle ® 88YellowBrown, Thickness @0.01 D<<,
AxesLabel ® 8"t", "alcohol @t D" <, AxesOrigin ® 8a, starter <,
AspectRatio -> 1, PlotRange ® All D;

2 4 6 8 t

20

40

60

80

100
alcohol@tD

Call the function that measures the concentration of alcohol in grams

per liter in Bubba's body fluids by the name concentration@tD. This

function is given by:
Clear @concentration D;

concentration @t_ D =
alcohol @t D

�����������������������������������
Bubbafluids

0.0173374 InterpolatingFunction @880., 9. <<, <>D@t D

Here comes the plot showing concentration@tD together with the legal

thresholds 1.0 grams per liter, 0.8 grams per liter, and the conservative

threshold 0.5 grams per liter:
Plot @8concentration @t D, 1.0, 0.8, 0.5 <, 8t, a, b <,

PlotStyle ® 88YellowBrown, Thickness @0.01 D<, Red, Red, Green <,
AspectRatio -> 1, AxesLabel ® 8"t", "concentration @t D" <,
PlotRange ® All D;

2 4 6 8 t
0.25
0.5

0.75
1

1.25
1.5

1.75
concentration@tD

In some states, Bubba can legally drive home about 7 hours after the

party begins. In other states, he must stay at the party for nearly eight

90

hours.

Just to be on the safe side, it might be a good idea for Bubba to stay at

the party a full nine hours.

Go back and run a drinking schedule you or a friend is likely to use.

You might pick up some useful information.

T.3) Using parametric plotting to plot the predator

population as a function of the prey population
Remember the predator-prey model from the previous lesson. In case
you've forgotten about it, here's the scoop again:

This mathematical model was orginally studied by Lotka and Volterra.
For a critical analysis of it, get hold of J. D. Murray, Mathematical

Biology, Springer-Verlag, New York,1990 and read.

Two species coexist in a closed environment. One species, the
predator, feeds on the other, the prey. There is always plenty of food
for the prey, but the predators eat nothing but the prey.
Put
 pred@tD = population of predators at time t.
Put
 prey@tD = population of prey at time t.

It's reasonable to assume that there are positive constants a and b such
that:
 prey'@tD = a prey@tD - b prey@tD pred@tD
because the abundance of food for the prey allows the birth rate of the
prey to be proportional to their current number, and the death rate of
prey is proportional to both the current number of prey and the current
number of predators.

It also makes some sense to assume that there are positive constants c
and d such that:
 pred'@tD = -c pred@tD + d pred@tD prey@tD
because it's reasonable to assume that the death rate of the predators is

likely to be proportional to the current population of predators and that
the birth rate of the predators is proportional to both the current
number of the predators and the size of the food supply (the prey).

Here is what happens for a sample choice of a, b, c, d with the prey
starting off with a population of 4 units and the predators starting out
with a population of 1 unit.

Here the units could be thousands or millions so that a fractional
population can make sense.

Here is Mathematica's fake plot of the prey population as a function of
time@tD for the first 50 time units:

endtime = 50;
a = 0.7;
b = 0.3;
c = 0.3;
d = 0.1;

Clear @pred, prey, t D;
approxsolutions = NDSolve @8prey ¢@t D == a prey @t D - b prey @t D pred @t D,

pred ¢@t D == -c pred @t D + d pred @t D prey @t D, prey @0D == 4, pred @0D == 1<,
8prey @t D, pred @t D<, 8t, 0, endtime <D;

Clear @fakepred, fakeprey D;
fakepred @t_ D = pred @t D �. approxsolutions P1T;
fakeprey @t_ D = prey @t D �. approxsolutions P1T;

preyplot = Plot Afakeprey @t D, 8t, 0, endtime <,

PlotStyle ® 88Blue, Thickness @0.015 D<<, AxesLabel ® 8"t", "prey" <,

AspectRatio ®
1
�����
3
E;

10 20 30 40 50
t

2

4

6

8
prey

And the predator population as a function of time t:
predatorplot = Plot Afakepred @t D,

8t, 0, endtime <, PlotStyle ® 88Red, Thickness @0.01 D<<,

AxesLabel ® 8"t", "predators" <, AspectRatio ®
1
�����
3
E;

10 20 30 40 50
t

1.5
2

2.5
3

3.5
4

4.5

predators

Here they are together:
both = Show@predatorplot, preyplot D;

10 20 30 40 50
t

2

4

6

8
predators

The plot of the prey population is thicker than the plot of the predator
population.

Note the relationship between the predator population's crests and dips
and prey population's crests and dips. Just after the predators start
growing, the prey is just about eaten up.

áT.3.a)

Use parametric plotting to display the predator population as a
function of the prey population and describe what you see.

áAnswer:

Here it is:
fullplot = ParametricPlot @8fakeprey @t D, fakepred @t D<,

8t, 0, endtime <, PlotStyle ® 88Thickness @0.01 D, DarkGreen <<,
PlotRange ® All, AxesLabel ® 8"prey", "predator" <D;

2 3 4 5 6 7 8
prey

1.5

2

2.5

3

3.5

4

4.5

predator

DE.04.T2®T3

A distorted ellipse that some folks call a closed curve.

This is a little hard to interpret.

To get a grasp on it, see what happens as t goes from 0 to 3:
three = ParametricPlot @8fakeprey @t D, fakepred @t D<,

8t, 0, 3 <, PlotStyle ® 88Thickness @0.01 D, DarkGreen <<,
AxesLabel ® 8"prey", "predator" <, PlotRange ® 880, 9 <, 80, 5 <<,
PlotLabel ® 3D;

2 4 6 8
prey

1

2

3

4

5
predator

3

 Now see what happens as t goes from 0 to 7:
seven = ParametricPlot @8fakeprey @t D, fakepred @t D<,

8t, 0, 7 <, PlotStyle ® 88Thickness @0.01 D, DarkGreen <<,
AxesLabel ® 8"prey", "predator" <, PlotRange ® 880, 9 <, 80, 5 <<,
PlotLabel ® 7D;

2 4 6 8
prey

1

2

3

4

5
predator

7

Now see what happens as t goes from 0 to 12:
twelve = ParametricPlot @8fakeprey @t D, fakepred @t D<,

8t, 0, 12 <, PlotStyle ® 88Thickness @0.01 D, DarkGreen <<,
AxesLabel ® 8"prey", "predator" <, PlotRange ® 880, 9 <, 80, 5 <<,
PlotLabel ® 12D;

91

2 4 6 8
prey

1

2

3

4

5
predator

12

Now see what happens as t goes from 0 to 15:
fifteen = ParametricPlot @8fakeprey @t D, fakepred @t D<,

8t, 0, 15 <, PlotStyle ® 88Thickness @0.01 D, DarkGreen <<,
AxesLabel ® 8"prey", "predator" <, PlotRange ® 880, 9 <, 80, 5 <<,
PlotLabel ® 15D;

2 4 6 8
prey

1

2

3

4

5
predator

15

To get the full effect, grab all three plots, animate, and run forward.

Holy smoke!

This is the same as:
Show@fullplot, PlotRange ® 880, 9 <, 80, 5 <<D;

2 4 6 8
prey

1

2

3

4

5
predator

The above plot shows what happens as t goes from 0 to 50.

Review the plots:
Show@GraphicsArray @88three, seven <, 8twelve, fifteen <<DD;

2 4 6 8 prey
1
2
3
4
5

predator 12

2 4 6 8 prey
1
2
3
4
5

predator 15

2 4 6 8 prey
1
2
3
4
5

predator 3

2 4 6 8 prey
1
2
3
4
5

predator 7

As time advances, the parametric points 8prey@tD, pred@tD< advance

around the closed curve in a counterclockwise way. As time advances

on and on, the parametric points 8prey@tD, pred@tD< cycle around this

curve over and over again.

Take another look but this time setting the axes' origin to 8 a�����b , c�����d <:
ShowAfullplot, PlotRange ® 880, 9 <, 80, 5 <<, AxesOrigin ® 9 c

�����
d

,
a
�����
b
=E;

0 2 4 6 8
prey

0

1

2

3

4

5
predator

Again the closed curve tells you that predator and prey populations are

periodic; they go through repeated cycles. And the time cycle for each

is the same. The four sectors above defined by the axes indicate four

phases depicting trends that reverse themselves as the curve crosses the

axes at prey= c�����d and predator= a�����b .

áT.3.b.i)

Wait a minute!
Take another look at the last plot.

Running this plot successfully requires that the cells in part a) are
active.

ShowAfullplot, PlotRange ® 880, 9 <, 80, 5 <<, AxesOrigin ® 9 c
�����
d

,
a
�����
b
=E;

0 2 4 6 8
prey

0

1

2

3

4

5
predator

Those axes pierce the curve at the maximum and minimum values of
prey and predator populations.
Is this just an accident?

áAnswer:

Stupid question.

In mathematics, there are no accidents.

áT.3.b.ii)

Explain why those axes pierce the plot at the maximum and minimum
values of prey and predator populations.

áAnswer:

Look at the original differential equations

 prey'@tD = a prey@tD - b prey@tD pred@tD,
 pred'@tD = -c pred@tD + d pred@tD prey@tD.

DE.04.T3

Take the first:

 prey'@tD = a prey@tD - b prey@tD pred@tD.
At the times t at which the prey population is at its maximum or at its

minimum, you gotta have

 prey'@tD = 0.

Consequently, at the times t at which the prey population is at its

maximum or at its minimum,

 0 = a prey@tD - b prey@tD pred@tD,
 = prey@tD Ha - b pred@tDL.
This tells you that at the times t at which the prey population is at its

maximum or at its minimum,

 pred@tD = a�����b .

Similarly, use

 pred'@tD = -c pred@tD + d pred@tD prey@tD
to see that for a maximum or minimum predator population, you have

 0 = -c pred@tD + d pred@tD prey@tD
 = pred@tD H-c + d prey@tDL,
so when the predator population is largest or smallest,

 prey@tD = c�����d .

This explains why when you use AxesOrigin® 8 c�����d , a�����b <; the axes

pierce the plot at the maximum and minimum values of prey and

predator populations.

ShowAfullplot, PlotRange ® 880, 9 <, 80, 5 <<, AxesOrigin ® 9 c
�����
d

,
a
�����
b
=E;

92

0 2 4 6 8
prey

0

1

2

3

4

5
predator

Math happens again.

T.4) More on reading the predator-prey model

áT.4.a)

Here is what happens in the predator-prey model for the sample
choice of proportionality constants
 a= 0.2, b = 0.05, c = 0.28, and d= 0.04
with the prey starting off with a population of 20 units and the
predators starting out with a population of 2 units.

endtime = 50;

a = 0.2;
b = 0.05;
c = 0.28;
d = 0.04;

Clear @pred, prey, t D;
approxsolutions =
NDSolve @8prey' @t D == a prey @t D - b prey @t D pred @t D,

pred' @t D == -c pred @t D + d pred @t D prey @t D,
prey @0D == 20,
pred @0D == 2<,

8prey @t D, pred @t D<, 8t, 0, endtime <D;

Clear @fakepred, fakeprey D;
fakepred @t_ D = pred @t D �. approxsolutions @@1DD;

fakeprey @t_ D = prey @t D �. approxsolutions @@1DD;

predpreyplot =
Plot @8fakeprey @t D, fakepred @t D<, 8t, 0, endtime <,

PlotStyle -> 88Blue, Thickness @0.015 D<,
8Red, Thickness @0.007 D<<,

AxesLabel -> 8"t", "" <D;

10 20 30 40 50
t

5

10

15

20

The plot of the prey population is thicker than the plot of the predator
population.

Add the horizontal line that hits the vertical axis at a�����b to this plot.
Inspect the plot; then describe what you see and explain why you see
it.

áAnswer:

Here you go:

ShowApredpreyplot, Graphics ALine A990,
a
�����
b
=, 9endtime,

a
�����
b
==EEE;

10 20 30 40 50
t

5

10

15

20

The plot of the prey population is thicker than the plot of the predator
population.

Interesting.

When pred@tD > a�����b , then prey@tD goes down.

Whenpred@tD < a�����b , then prey@tD goes up.

And prey@tD takes its largest and smallest values when

 pred@tD = a�����b .

To explain this phenomenom, look at one of the differential equations

that went into this plot:

 prey'@tD = a prey@tD - b prey@tD pred@tD
 = prey@tD Ha - b pred@tDL.
When pred@tD > a�����b , then Ha - b pred@tDL < 0.

So when pred@tD > a�����b , then

 prey'@tD = prey@tD Ha - b pred@tDL < 0.

That's why the prey curve goes down when pred@tD > a�����b .

Similarly when pred@tD < a�����b , then prey'@tD > 0.

That's why the prey curve goes up when pred@tD < a�����b .

When pred@tD = a�����b , then

 prey'@tD = prey@tD Ha - b pred@tDL = 0.

That's why prey@tD takes its largest and smallest values when

 pred@tD = a�����b .

Amazing what a little calculus can do.

DE.04 Modern DiffEq Issues
Give It a Try!

G.1) Visual flows and trajectories: Quickies

áG.1.a.i)

Here's a differential equation of the logistic type:
Clear @f, x, t D;

f @t_, x_ D = 0.2 x J1 -
x

��������
10

N;

diffeq = Hx ¢@t D == f @t, x @t DDL

DE.04.T3®G1

x ¢@t D == 0.2 J1 -
x@t D
��������������

10
N x@t D

Here is a flow plot for this diffeq shown with the plot of a certain
curve:

Clear @f, x, t D;

f @t_, x_ D = 0.2 x J1 -
x

��������
10

N;

scalefactor = 2;
flowplot = Table @Arrow @81, f @t, x D<, Tail ® 8t, x <,

VectorColor ® Blue, ScaleFactor ® scalefactor, HeadSize ® 0.9 D,
8t, 0, 20, 2 <, 8x, 0, 16, 2 <D;

curveplot = Plot A 10 Exp @0.2 t D
���
Exp@0.2 t D - 0.5

, 8t, 0, 20 <, PlotStyle ®

88Thickness @0.015 D, Brown <<, DisplayFunction ® Identity E;

Show@flowplot, curveplot, Axes ® True, AxesLabel ® 8"t", "x" <,
DisplayFunction ® $DisplayFunction D;

5 10 15 20 t

5

10

15

20
x

Using only your eyes, what's your guess?
Is that curve a reasonable approximation of a solution of this diffeq?
Explain what visual evidence you used to arrive at your opinion.

áG.1.a.ii)

Stay with the same diffeq and flow plot as in part i) above and look at
the flowplot together with the plot of a certain new curve:

newcurveplot = Plot A 8 Exp@0.2 t D
���
Exp@0.2 t D - 0.5

, 8t, 0, 20 <,

PlotStyle ® 88Thickness @0.015 D, Red <<, DisplayFunction ® Identity E;

Show@flowplot, newcurveplot, Axes ® True, AxesLabel ® 8"t", "x" <,
DisplayFunction ® $DisplayFunction D;

93

5 10 15 20
t

2.5

5

7.5

10

12.5

15

x

Using only your eyes, what's your guess?
Is that curve a reasonable approximation of a solution of this diffeq?
Explain what visual evidence you used to arrive at your opinion.

áG.1.b.i)

Here's a new differential equation of the logistic type:
Clear @f, x, t D;

f @t_, x_ D = 0.3 x J1 -
x
�����
8
N;

diffeq = Hx ¢@t D == f @t, x @t DDL
x ¢@t D == 0.3 J1 -

x@t D
��������������

8
N x@t D

Here is a flow plot for this diffeq:
Clear @f, x, t D;

f @t_, x_ D = 0.3 x J1 -
x
�����
8
N;

scalefactor = 2;
flowplot = Table @Arrow @81, f @t, x D<, Tail ® 8t, x <,

VectorColor ® Blue, ScaleFactor ® scalefactor, HeadSize ® 0.7 D,
8t, 0, 20, 2 <, 8x, -2, 10, 2 <D;

Show@flowplot, Axes ® True, AxesLabel ® 8"t", "x" <,
DisplayFunction ® $DisplayFunction D;

5 10 15 20
t

-2

2

4

6

8

10

x

Got any idea why those arrows corresponding to x= 0 and x= 8 are
not tilted at all? If so, then say why.
Got any idea why the arrows corresponding to 0< x < 8 are tilted up,
but the otheres are tilted down? If so, then say why.

áG.1.b.ii)

Stay with the same diffeq as in part i) and look at the same flow plot
together with the plot of a certain curve:

curveplot = Plot A 8 Exp@0.2 t D
���
Exp@0.2 t D + 1.5

, 8t, 0, 20 <,

PlotStyle ® 88Thickness @0.015 D, Red <<, DisplayFunction ® Identity E;

Show@flowplot, curveplot, Axes ® True, AxesLabel ® 8"t", "x" <,
DisplayFunction ® $DisplayFunction D;

5 10 15 20
t

-2

2

4

6

8

10

x

Using only your eyes, what's your guess?
Is that curve a reasonable approximation of a solution of this diffeq?
Explain what visual evidence you used to arrive at your opinion.

áG.1.b.iii)

Here's a new differential equation of the logistic type:
Clear @f, x, t D;

f @t_, x_ D = 0.26 x J1 -
x

�����������
8.6

N;

diffeq = Hx ¢@t D == f @t, x @t DDL
x ¢@t D == 0.26 H1 - 0.116279 x @t DL x@t D

Here is a flow plot for this diffeq shown with a plot of a certain curve:
Clear @f, x, t D;

f @t_, x_ D = 0.26 x J1 -
x

�����������
7.6

N;

scalefactor = 2;

flowplot = Table @Arrow @81, f @t, x D<, Tail ® 8t, x <,
VectorColor ® Blue, ScaleFactor ® scalefactor, HeadSize ® 0.8 D,

8t, 0, 20, 2 <, 8x, -2, 10, 2 <D;

curveplot = Plot A 3 Exp@0.2 t D
���������������������������������������
Exp@0.2 t D + 3

+ 2, 8t, 0, 20 <, PlotStyle ®

88Thickness @0.015 D, Brown <<, DisplayFunction ® Identity E;

Show@flowplot, curveplot, Axes ® True, AxesLabel ® 8"t", "x" <,
DisplayFunction ® $DisplayFunction D;

5 10 15 20
t

-2

2

4

6

8

10

x

Using only your eyes, what's your guess?
Is that curve a reasonable approximation of a solution of this diffeq?
Explain what visual evidence you used to arrive at your opinion.

áG.1.c.i) Systems

Here's a system of differential equations:
Clear @x, y, t, desystem D;
desystem = 8x ¢@t D == y@t D, y ¢@t D == -x@t D<;
ColumnForm @desystem D

x ¢@t D == y@t D
y ¢@t D == -x@t D

Here is a flow plot for this diffeq system shown with a plot of a
certain curve:

Clear @flow D;
flow @x_, y_ D = 8y, -x<;
scalefactor = 0.5;
flowplot = Table @Arrow @flow @x, y D, Tail ® 8x, y <, VectorColor ® Blue,

ScaleFactor ® scalefactor, HeadSize ® 0.4 D, 8x, -4, 4 <, 8y, -4, 4 <D;
curveplot =

ParametricPlot @83.5 Sin @t D, 3.5 Cos @t D<, 8t, 0, 2 p<, PlotStyle ®
88Thickness @0.015 D, Brown <<, DisplayFunction ® Identity D;

Show@flowplot, curveplot, Axes ® True, AxesLabel ® 8"x", "y" <,
DisplayFunction ® $DisplayFunction D;

DE.04.G1

-6 -4 -2 2 4 6 x

-6

-4

-2

2

4

6
y

Using only your eyes, what's your guess?
Is that curve a reasonable approximation of a parametric plot of a
solution 8x@tD, y@tD< of this diffeq system?
Explain what visual evidence you used to arrive at your opinion.

áG.1.c.ii)

Stay with the same system and flow plot, but with the plot of a new
curve:

newcurveplot =
ParametricPlot @84 Sin @t D, 2.5 Cos @t D<, 8t, 0, 2 p<, PlotStyle ®

88Thickness @0.009 D, Brown <<, DisplayFunction ® Identity D;
Show@flowplot, newcurveplot, Axes ® True, AxesLabel ® 8"x", "y" <,

DisplayFunction ® $DisplayFunction D;

-6 -4 -2 2 4 6 x

-6

-4

-2

2

4

6
y

Using only your eyes, what's your guess?
Is that curve a reasonable approximation of a parametric plot of a
solution 8x@tD, y@tD< of this diffeq system?
Explain what visual evidence you used to arrive at your opinion.

áG.1.d.i)

Here's a system of differential equations closely related to the
predator-prey system

94

Clear @x, y, t, desystem D;
desystem = 8x' @t D == 1.2 x @t D H5.2 - y@t DL,

y' @t D == 0.9 y @t D Hx@t D - 8.3 L<;
desystem �� ColumnForm

x ¢@t D == 1.2 x @t D H5.2 - y@t DL
y ¢@t D == 0.9 H-8.3 + x@t DL y@t D

Here is a flow plot for this diffeq system shown with a plot of a
certain curve:

Clear @flow D;
flow @x_, y_ D = 81.2 x H5.2 - yL, 0.9 H-8.3 + xL y<;
flowplot = Table @Arrow @flow @x, y D, Tail ® 8x, y <, VectorColor ® Blue,

ScaleFactor ® Normalize, HeadSize ® 0.5 D, 8x, 0, 21 <, 8y, 0, 15 <D;
curveplot =

ParametricPlot @88, 5 < + 5 8Cos@t D, Sin @t D<, 8t, 0, 2 p<, PlotStyle ®
88Thickness @0.009 D, Brown <<, DisplayFunction ® Identity D;

Show@flowplot, curveplot, Axes ® True, AxesLabel ® 8"x", "y" <,
DisplayFunction ® $DisplayFunction D;

5 10 15 20
x

2.5

5

7.5

10

12.5

15

y

Using only your eyes, what's your guess?
Is that curve a reasonable approximation of a parametric plot of a
solution 8x@tD, y@tD< of this diffeq system?
Explain what visual evidence you used to arrive at your opinion.

áG.1.d.ii)

Stay with the same system and flow plot, but with the plot of a new
curve:

Clear @x, y, t, desystem D;
desystem = 8x ¢@t D == 1.2 x @t D H5.2 - y@t DL, y ¢@t D == 0.9 y @t D Hx@t D - 8.3 L<;
Clear @f, t D
f @t_ D = 8x@t D, y @t D< �. NDSolve @Join @desystem,

8x@0D == 3.4, y @0D == 2.1 <D, 8x@t D, y @t D<, 8t, 0, 3 <DP1T;
newcurveplot = ParametricPlot @f @t D, 8t, 0, 3 <, PlotStyle ®

88Thickness @0.009 D, Brown <<, DisplayFunction ® Identity D;

Show@flowplot, newcurveplot, Axes ® True, AxesLabel ® 8"x", "y" <,
DisplayFunction ® $DisplayFunction D;

5 10 15 20
x

2.5

5

7.5

10

12.5

15

y

Using only your eyes, what's your guess?
Is that curve a reasonable approximation of a parametric plot of a
solution 8x@tD, y@tD< of this diffeq system?
Explain what visual evidence you used to arrive at your opinion.

áG.1.e)

Here's a new diffeq
Clear @f, x, t D;
f @t_, x_ D = Sqrt @xD;
diffeq = Hx' @t D == f @t, x @t DDL

x ¢@t D ==
�!!!!!!!!!!

x@t D
Here is a flow plot for this diffeq shown with the plot of a certain
curve:

Clear @f, x, t, function D;

f @t_, x_ D =
�!!!

x ;
scalefactor = 1.5;

flowplot =
Table @Arrow @81, f @t, x D<, Tail -> 8t, x <, VectorColor -> Blue,

ScaleFactor -> scalefactor, HeadSize -> 0.5 D,
8t, 0, 20, 2 <, 8x, 0, 16, 2 <D;

function @t_ D = x@t D �. DSolve @8diffeq, x @15D == 16<, x @t D, t D@@2DD;

curveplot = Plot @function @t D, 8t, 0, 15 <,
PlotStyle -> 88Thickness @0.015 D, Brown <<,
DisplayFunction -> Identity D;

Show@flowplot, curveplot, Axes -> True, AxesLabel -> 8"t", "x" <,
DisplayFunction -> $DisplayFunction D;

5 10 15 20 t

5

10

15

20

x

Using only your eyes, what's your guess?
Is that curve a reasonable approximation of a solution of this diffeq?
Explain what visual evidence you used to arrive at your opinion.

G.2) Reading a diffeq through flow plots

áG.2.a.i)

Here's a differential equation:
Clear @diffeq, y, t, f, starter D;
f @t_, y_ D = y - 0.5 E^ H-0.3 t L;
Hdiffeq = 8y' @t D == f @t, y @t DD, y @0D == starter <L �� ColumnForm

y ¢@t D == -0.5 E -0.3 t + y@t D
y@0D == starter

And its flow plot shown with one specially marked point:

DE.04.G1®G2

scalefactor = 0.5;
8ylow, yhigh < = 8-10, 10 <;
8tlow, thigh < = 80, 8 <;
specialpoint = 82.5, 3.0 <;

flowplot = Table AArrow @81, f @t, y D<, Tail ® 8t, y <,

VectorColor ® Blue, ScaleFactor ® scalefactor, HeadSize ® 0.6 D,

9t, tlow, thigh,
thigh - tlow
�����������������������������������

12
=, 9y, ylow, yhigh,

yhigh - ylow
�����������������������������������

8
=E;

ShowAflowplot, Axes ® True,

AxesLabel ® 8"t", "y" <, AspectRatio ®
1

�����������������������������������
GoldenRatio

,

Epilog ® 8Red, PointSize @0.02 D, Point @specialpoint D<E;

2 4 6 8
t

-15

-10

-5

5

10

15

y

Imagine that a solution curve is coming from the left and passes
through this specially marked point. What happens to the solution as it
leaves this point?
Does it go up or does it go down?

áG.2.a.ii)

Stay with the same diffeq and flow plot, but go with this new specially
marked point:

specialpoint = 82.5, -3.0 <;

ShowAflowplot, Axes ® True,

AxesLabel ® 8"t", "y" <, AspectRatio ®
1

�����������������������������������
GoldenRatio

,

Epilog ® 8Red, PointSize @0.03 D, Point @specialpoint D<E;

95

2 4 6 8
t

-15

-10

-5

5

10

15

y

Imagine that a solution curve is coming from the left and passes
through this specially marked point. What happens to the solution as it
leaves this point?
Does it go up or does it go down?

áG.2.a.iii)

Stay with the same diffeq and flow plot and look at plots of two
solutions:

Clear @y1, y2, t D;
8starter1, starter2 < = 80.5, 1.3 <;
endtime = thigh;
y1@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter1, y @t D, 8t, 0, endtime <DP1T;
y2@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter2, y @t D, 8t, 0, endtime <DP1T;
solutionplots = Plot @8y1@t D, y2 @t D<, 8t, 0, endtime <,

PlotStyle ® 88Thickness @0.01 D, Red <<, DisplayFunction ® Identity D;

ShowAsolutionplots, flowplot, Axes ® True, AxesLabel ® 8"t", "y" <,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, PlotRange ® 8-15, 15 <,

DisplayFunction ® $DisplayFunction E;

2 4 6 8
t

-15

-10

-5

5

10

15
y

Disregard any error messages.

Visible in this flow plot are two distinct families of solutions, but both
plotted solutions are of the same type. Copy, paste and edit in effort to
show sample plots of each family.

áG.2.a.iv)

Folks say that a diffeq is extremely sensitive to errors in starting data
on y@0D if small changes in y@0D can result in radically different
behavior of the corresponding solutions.
For what values of y@0D do you see extreme sensitivity to errors on
y@0D?

áG.2.b.i)

Here's a new differential equation:
Clear @diffeq, y, t, f, starter D;

f @t_, y_ D = f @t_, y_ D = J1 -
y
�����
2
N J1 -

y
�����
8
N;

Hdiffeq = 8y' @t D == f @t, y @t DD, y @0D == starter <L �� ColumnForm

y ¢@t D == H1 - y@t D�����������2 L H1 - y@t D�����������8 L
y@0D == starter

And its flow plot:
scalefactor = 1.2;
8ylow, yhigh < = 8-1, 12 <;
8tlow, thigh < = 80, 9 <;

flowplot = Table AArrow @81, f @t, y D<, Tail ® 8t, y <,

VectorColor ® Blue, ScaleFactor ® scalefactor, HeadSize ® 0.6 D,

9t, tlow, thigh,
thigh - tlow
�����������������������������������

12
=, 9y, ylow, yhigh,

yhigh - ylow
�����������������������������������

13
=E;

ShowAflowplot, Axes ® True, AxesLabel ® 8"t", "y" <,

AspectRatio ®
1

�����������������������������������
GoldenRatio

E;

2 4 6 8 10
t

2.5

5

7.5

10

12.5

15

y

Here are the plots of three solutions:
Clear @y1, y2, y3, t D;
8starter1, starter2, starter3 < = 83.0, 5.0, 7.0 <;
endtime = thigh;
y1@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter1, y @t D, 8t, 0, endtime <DP1T;
y2@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter2, y @t D, 8t, 0, endtime <DP1T;
y3@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter3, y @t D, 8t, 0, endtime <DP1T;
solutionplots = Plot @8y1@t D, y2 @t D, y3 @t D<, 8t, 0, endtime <,

PlotStyle ® 88Thickness @0.015 D, Red <<, DisplayFunction ® Identity D;

ShowAsolutionplots, flowplot, Axes ® True, AxesLabel ® 8"t", "y" <,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, DisplayFunction ® $DisplayFunction E;

2 4 6 8 10
t

2.5

5

7.5

10

12.5

15

y

Disregard any error messages.

Visible in this flow plot are three distinct families of solutions, but the
three plotted solutions are of the same type.
Copy, paste and edit in effort to show sample plots of each type.

DE.04.G2®G3

áG.2.b.ii)

Stay with the same diffeq as in part ii) immediately above and discuss
where you see extreme sensitivity to errors in the starter value on y@0D.
Illustrate with a decisive plot.

G.3) Reading the diffeq through flow plots and phase lines

áG.3.a.i) Flow plots

Here's an old friend, the logistic differential equation:
Clear @diffeq, y, t, f, starter D;
b = 6;

f @t_, y_ D = 0.45 y J1 -
y
�����
b
N;

diffeq

8y ¢@t D == f @t, y @t DD, y @0D == starter <
y ¢@t D == 0.45 H1 - y@t D�����������6 L y@t D
y@0D == starter

Here is a flow plot shown with plots of four solutions of this diffeq.
8ylow, yhigh < = 80, 9 <;
8tlow, thigh < = 80, 12 <;
scalefactor = 1.4;

flowplot = Table AArrow @81, f @t, y D<, Tail ® 8t, y <,

VectorColor ® Blue, Scalefactor ® scalefactor, HeadSize ® 0.5 D,

9t, tlow, thigh,
thigh - tlow
�����������������������������������

8
=, 9y, ylow, yhigh,

yhigh - ylow
�����������������������������������

9
=E;

Clear @y1, y2, y3, y, t D;
8starter1, starter2, starter3, starter4 < = 80, 3.0, 6.0, 8.5 <;
endtime = thigh;
y1@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter1, y @t D, 8t, 0, endtime <DP1T;
y2@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter2, y @t D, 8t, 0, endtime <DP1T;
y3@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter3, y @t D, 8t, 0, endtime <DP1T;
y4@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter4, y @t D, 8t, 0, endtime <DP1T;
solutionplots = Plot @8y1@t D, y2 @t D, y3 @t D, y4 @t D<, 8t, 0, endtime <,

PlotStyle ® 88Thickness @0.015 D, Red <<, DisplayFunction ® Identity D;

96

setup = ShowAsolutionplots, flowplot,

Axes ® True, AxesLabel ® 8"t", "y" <, PlotRange ® 8ylow, yhigh <,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, DisplayFunction ® $DisplayFunction E;

2 4 6 8 10 12
t

2

4

6

8

y

Describe how the solution plots are in harmony with the flow plot.
How does the flow plot confirms that the solutions starting at y= 0
and y= 6 stay flat all the way?

áG.3.a.ii) The phase line

Look at this embellishment of the graphic immediately above.
phaseline = PhaseLine @f @t, y D, 8y, 0, yhigh <, Blue, tlow - 1D;
Show@setup, phaseline D;

2 4 6 8 10 12
t

2

4

6

8

y

Folks like to call that gadget on the far left
by the name "phase line" for the diffeq.

What do you think that the upward arrowhead on the phaseline
signifies?
What do you think that the downward arrowhead on the phase line
signifies?
What do you think that the centers of the two dots on the phase line
signify?

áG.3.b.i) Flow plots

Here's a a diffeq which is related to the logistic differential equation:
Clear @diffeq, y, t, f, starter D;
b = 6;

f @t_, y_ D = 0.45 y J1 -
y
�����
4
N J1 -

y
�����
8
N;

diffeq

8y ¢@t D == f @t, y @t DD, y @0D == starter <
y ¢@t D == 0.45 H1 - y@t D�����������4 L H1 - y@t D�����������8 L y@t D
y@0D == starter

Here is a flow plot shown with plots of four solutions of this diffeq.
8ylow, yhigh < = 80, 12 <;
8tlow, thigh < = 80, 12 <;

flowplot = Table AArrow @81, f @t, y D<, Tail ® 8t, y <,

VectorColor ® Blue, ScaleFactor ® Normalize, HeadSize ® 0.6 D,

9t, tlow, thigh,
thigh - tlow
�����������������������������������

8
=, 9y, ylow, yhigh,

yhigh - ylow
�����������������������������������

9
=E;

Clear @y1, y2, y3, y4, y5, y6, y, t D;
8starter1, starter2, starter3, starter4, starter5, starter6 < =
80.2, 4.0, 6.0, 7.8, 8.0, 8.2 <;

endtime = thigh;
y1@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter1, y @t D, 8t, 0, endtime <DP1T;
y2@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter2, y @t D, 8t, 0, endtime <DP1T;
y3@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter3, y @t D, 8t, 0, endtime <DP1T;
y4@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter4, y @t D, 8t, 0, endtime <DP1T;
y5@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter5, y @t D, 8t, 0, endtime <DP1T;
y6@t_ D = y@t D �.

NDSolve @diffeq �. starter ® starter6, y @t D, 8t, 0, endtime <DP1T;
solutionplots =

Plot @8y1@t D, y2 @t D, y3 @t D, y4 @t D, y5 @t D, y6 @t D<, 8t, 0, endtime <,
PlotStyle ® 88Thickness @0.015 D, Red <<, DisplayFunction ® Identity D;

setup = ShowAsolutionplots, flowplot,

Axes ® True, AxesLabel ® 8"t", "y" <, PlotRange ® 8ylow, yhigh <,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, DisplayFunction ® $DisplayFunction E;

2 4 6 8 10 12
t

2

4

6

8

10

12
y

Don't worry about the error messages.

Folks say that a diffeq is extremely sensitive to errors in starting data
on y@0D if small changes in y@0D can result in radically different
behavior of the corresponding solutions. For what values of y@0D do
you see extreme sensitive to errors on y@0D?

áG.3.b.ii) The phase line

Look at this embellishment of the graphic immediately above.
phaseline = PhaseLine @f @t, y D, 8y, 0, 12 <, Blue, -1D;
Show@setup, phaseline D;

2 4 6 8 10 12
t

2

4

6

8

10

12
y

Folks like to call that gadget on the far left
by the name "phase line" for the diffeq.

What do you think that the upward arrowheads on the phaseline
signify?
What do you think that the downward arrowhead on the phase line
signifies?
What do you think that the centers of the two dots on the phase line
signify?

DE.04.G3®G4

G.4) Shooters: Firing for effect
A chemostat is a well-stirred vessel that contains microorganisms into
which fresh medium is pumped at a constant rate F. The contents are
pumped out at the same rate so that the volume V of the fluid in the
chemostat remains constant.

Chemostat experiments performed by Hansen and Hubbell (Science,
20 (1980), pp 1491-1493)) in which the amino acid tryptophan was
pumped at a constant rate into a chemostat containing a certain strain
of E. coli bacteria indicated a growth model:

Clear @diffeq, y, t, f, s, d, starter D;

f @t_, y_ D =
i
k
jjj 0.81 Hs - yL

���������������������������������
3 + Hs - yL

- d
y
{
zzz y;

diffeq

8y ¢@t D == f @t, y @t DD, y @0D == starter <
y ¢@t D == I-d + 0.81 Hs-y@t DL������������������������������3+s-y@t D M y@t D
y@0D == starter

Here:
® y@tD measures the population of the E. coli at time t after the
pumping of the amino acid started.
® s is the concentration (in millionths of grams per liter) in of the
amino acid in the fluid pumped into the chemostat.
® d = F������V , so larger values of d correspond to a fast running pump,
and low values of d correspond to a slow running pump.

In the experiment under study here, s= 9.8 and d= 0.3 ; so the
model becomes:

s = 9.8;
d = 0.3;
Clear @diffeq, y, t, f, starter D;

f @t_, y_ D =
i
k
jjj 0.81 Hs - yL

���������������������������������
3 + Hs - yL

- d
y
{
zzz y;

diffeq

8y ¢@t D == f @t, y @t DD, y @0D == starter <

97

y ¢@t D == I-0.3 + 0.81 H9.8 -y@t DL�����������������������������������12.8 -y@t D M y@t D
y@0D == starter

You are given the job of coming up with a starter y@0D so that the E.
coli population at time t= 15.0 is 6.12 to two accurate decimals.

endtime = 15.0;
goal = 6.12;
target = 8endtime, goal <;
bullseye = Graphics @8PointSize @0.03 D, Red, Point @target D<D;
targetlabel = Graphics @Text @target, target, 81, 2 <DD;

Show@bullseye, targetlabel, Axes ® True, AxesLabel ® 8"t", "y @t D" <,
PlotRange ® 880, 1.3 target P1T<, 80, 1.3 target P2T<<D;

2.5 5 7.5 10 12.5 15 17.5
t

1
2
3
4
5
6
7

y@tD

815., 6.12<

Make a guess
 y@0D = starter= 4
and activate the following solution plotter code which plots and
remembers your first try:

starter = 4.0;
Clear @thistry, sollist D;
thistry @t_ D = y@t D �. NDSolve @diffeq, y @t D, 8t, 0, endtime <DP1T;
sollist = 8thistry @t D<;
numsols = Length @sollist D; Null;
startingpoints = N@sollist �. t ® 0, 3 D;
names = Table @startingpoints PkT, 8k, numsols <D;

plotsols = Plot AEvaluate @sollist D, 8t, 0, endtime <,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, PlotStyle ® 88Thickness @0.01 D, Blue <<,

AxesLabel ® 8"t", "y @t D" <, DisplayFunction ® Identity E;

Show@plotsols, bullseye, targetlabel,
PlotRange ® All, DisplayFunction ® $DisplayFunction D;

TableForm @8startingpoints, N @sollist �. t ® endtime, 3 D<,
TableHeadings ® 88"y @0D", "y @1D" <, None <D

2 4 6 8 10 12 14
t

5

6

7

8

y@tD

815., 6.12<

y@0D 4.

y@1D 8.04

The solution corresponding to y@0D = 4 overshoots the target. You
respond by decreasing your starting value on y@0D and trying again:

starter = 0.02;
Clear @thistry D;
thistry @t_ D = y@t D �. NDSolve @diffeq, y @t D, 8t, 0, endtime <DP1T;
PrependTo @sollist, thistry @t DD;
numsols = Length @sollist D;
If @numsols > 3, numsols -= 1; sollist = Drop @sollist, -1DD;
startingpoints = N@sollist �. t ® 0, 3 D;
names = Table @startingpoints PkT, 8k, numsols <D;

plotsols = Plot AEvaluate @sollist D, 8t, 0, endtime <,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, PlotStyle ® 88Thickness @0.01 D, Blue <<,

AxesLabel ® 8"t", "y @t D" <, DisplayFunction ® Identity E;

Show@plotsols, bullseye, targetlabel,
PlotRange ® All, DisplayFunction ® $DisplayFunction D;

TableForm @8startingpoints, N @sollist �. t ® endtime, 4 D<,
TableHeadings ® 88"y @0D", "y @endtime D" <, None <D

2 4 6 8 10 12 14
t

2

4

6

8

y@tD

815., 6.12<

y@0D 0.02 4.

y@endtime D 2.169 8.035

Interact with this last code by changing the starter values and
re-running. The code is written to keep track of your last three
attempts.
Remember, your job is to come up with a starting value that makes
y@endtimeD agree with 6.12 to two accurate decimals (after rounding).

G.5) Logistic harvesting*
Take the logistic equation
 y¢@tD = a y@tD I1 - y@tD����������b M with 0 < a and 0< b
and start with 0< y@0D < b.

As t advances from 0, then you are guaranteed that y@tD grows with
some pep until y@tD gets near b.
Once y@tD gets near b, then y@tD settles into global scale with
 y@tD ® b as t® ∞.
Check it out:

endtime = 52;
a = 0.32;
b = 1400;
starter = 350;
Clear @t, y D;

solution = NDSolve A

9y ¢@t D == a y@t D i
k
jj1 -

y@t D
��������������

b

y
{
zz, y @0D == starter =, y @t D, 8t, 0, endtime <E;

Clear @fakey D;
fakey @t_ D = y@t D �. solution P1T;
fakeplot = Plot @8fakey @t D<, 8t, 0, endtime <,

PlotStyle ® 88Blue, Thickness @0.01 D<<, DisplayFunction ® Identity D;
globalscale = Graphics @8Red, Line @880, b <, 8endtime, b <<D<D;

Show@fakeplot, globalscale, AxesLabel ® 8"t", "y @t D" <,
PlotRange ® All, AspectRatio ® 1, DisplayFunction ® $DisplayFunction D;

DE.04.G4®G5

10 20 30 40 50 t

600

800

1000

1200

1400
y@tD

You get a reasonable interpretation of the logistic differential equation
 y¢@tD = a y@tD I1 - y@tD����������b M with 0 < y@0D < b
by imagining that y@tD is the number of catfish in a given lake on a
catfish farm t weeks after the lake was stocked with y@0D catfish. As
time goes on, the catfish population increases until it reaches its
steady-state population of b catfish.
But the catfish farmer doesn't grow catfish as pets; the farmer is in
business to harvest catfish and to sell them so that hungry people can
fry them up and then wash them down with a couple of cold beers or
iced teas.

áG.5.a.i)

Measure time in weeks and assume the farmer wants to harvest r fish
per week and explain why
 y¢@tD = a y@tD I1 - y@tD����������b M - r
lays the base for a reasonable model.

áG.5.a.ii)

The farmer opens the lake and lets the fish population increase to a
level of 1000 fish. Then the farmer begins to harvest at a rate of
r = 130 fish per week. Here's what happens over the next year:

This goes with specific data a = 0.32 and b = 1400.

The reason that b = 1400 is that 1400 fish is the greatest number of
fish the lake can support.

endtime = 52;
r = 130;
a = 0.32;
b = 1400;
starter = 1000;

98

Clear @t, y D;

solution = NDSolve A9y ¢@t D == a y@t D i
k
jj1 -

y@t D
��������������

b

y
{
zz - r,

y@0D == starter =, y @t D, 8t, 0, endtime <E;

Clear @fakey D;
fakey @t_ D = y@t D �. solution P1T;
fakeplot = Plot @8fakey @t D<, 8t, 0, endtime <,

PlotStyle ® 88Blue, Thickness @0.015 D<<, DisplayFunction ® Identity D;
withoutharvest = Graphics @8Red, Line @880, b <, 8endtime, b <<D<D;

Show@
fakeplot, withoutharvest, AxesLabel ® 8"t", "y @t D" <, AspectRatio ® 1,
PlotRange ® 880, 52 <, 8-100, b <<, DisplayFunction ® $DisplayFunction D;

10 20 30 40 50 t

200

400

600

800

1000

1200

1400
y@tD

Disaster.
In a little more than 30 weeks, the fish supply is gone.
Here's what happens over a one-year period if the farmer lowers the
weekly harvest from 130 to 100 fish:

endtime = 52;
r = 100;
starter = 1000;
Clear @t, y D;

solution = NDSolve A9y ¢@t D == a y@t D i
k
jj1 -

y@t D
��������������

b

y
{
zz - r,

y@0D == starter =, y @t D, 8t, 0, endtime <E;

Clear @fakey D;
fakey @t_ D = y@t D �. solution P1T;
fakeplot = Plot @8fakey @t D<, 8t, 0, endtime <,

PlotStyle ® 88Blue, Thickness @0.015 D<<, DisplayFunction ® Identity D;
withoutharvest = Graphics @8Red, Line @880, b <, 8endtime, b <<D<D;

Show@
fakeplot, withoutharvest, AxesLabel ® 8"t", "y @t D" <, AspectRatio ® 1,
PlotRange ® 8-100, b <, DisplayFunction ® $DisplayFunction D;

10 20 30 40 50 t

200

400

600

800

1000

1200

1400
y@tD

That's nice.
The lake produces 100 fish per week for harvest and maintains a fish
population of about 1000 fish at all times.
Can the farmer harvest significantly more than 100 fish per week and
avoid disaster?
If so, then estimate how big the weekly harvest r can be before
disaster sets in.

áTip:

If you can't come up with a grand theory, prospect a little bit.

 Is r = 110 OK?

 How about r = 120?

 Remember, you are after an estimate, not an exact number.

áG.5.a.iii)

Take your biggest possible weekly harvest estimate r from part ii)
above and estimate how small y@0D = starter can be before disaster sets
in.

áTip:

Evidently y@0D = 1000 is OK.

Can the lake still be harvested at the same weekly rate r if you start

with y@0D = 800? How about y@0D = 700? How low can you go?

áG.5.b.i)

The diffeq model is
 y¢@tD = a y@tD I1 - y@tD����������b M - r.
When you look at it, you can see that you can realize y' as a function
of population size y through the formula
 y¢ = f @yD = a yH1 - y�����b L - r
Look at this plot which is related to the case with r= 100 above.

r = 100;
Clear @f, y D;

f @y_D = a y J1 -
y
�����
b
N - r;

Plot Af @yD, 8y, 0, b <, PlotStyle ® 88Thickness @0.01 D, Blue <<,

AxesOrigin ® 80, 0 <, AxesLabel ® 8"y", "y'" <,

AspectRatio ®
1

�����������������������������������
GoldenRatio

E;

200 400 600 800 1000 1200 1400
y

-100

-80

-60

-40

-20

y’

Some folks call this a phase plot, not to be confused with a phase line.

DE.04.G5

Remembering that y¢ = f @yD, report on how this plot tells you that if
the fish population is ever more than 500, then you can continue a
weekly harvest of 100 fish and the predicted long term fish population
will settle in at a little more than 900.
Also remembering that y¢ = f @yD, report on how this plot tells you that
if the fish popoulation ever falls below 400 then a weekly harvest of
100 fish will drive the fish population to 0.

áG.5.b.ii)

Look at this plot which is related to the case with harvest rate r= 120.
r = 120;
Clear @f, y D;

f @y_D = a y J1 -
y
�����
b
N - r;

Plot Af @yD, 8y, 0, b <, PlotStyle ® 88Thickness @0.01 D, Blue <<,

AxesOrigin ® 80, 0 <, AxesLabel ® 8"y", "y'" <,

AspectRatio ®
1

�����������������������������������
GoldenRatio

E;

200 400 600 800 1000 1200 1400
y

-120

-100

-80

-60

-40

-20

y’

Remembering that y¢ = f @yD, report on how this plot tells you that
continuing to harvest 120 fish per week will eventually drive the fish
population to 0.

99

G.6) Running Euler's faker

áG.6.a.i)

Here's an innocent-looking differential equation:
 y'@xD = y@xD H3 + 3 Sin@xD - y@xDL
 with y@0D = starter= 0.5.
If you want to get a plot of the solution, you ask Mathematica for a
formula for the solution:

Clear @x, y, starter D;
thisstarter = 0.5;
DSolve @8y ¢@xD == y@xD H3 + 3 Sin @xD - y@xDL, y @0D == starter <, y @xD, x D �.

starter ® thisstarter

99y@xD ® -H0.5 E 3+3 x -3 Cos@xDL � J-1 + 10.0428 à 1
��������
E3

 â 0 -

10.0428 à E3 x -3 H Cos@xD���������������2 - 1����2 I Sin @xDL-3 H Cos@xD���������������2 + 1����2 I Sin @xDL â xN==

This made Mathematica barf. The output is useless.
Try as it might, Mathematica could not come up with a useful formula
for the true solution y@xD. But students like you are not easily
dissuaded. Use Euler's method to come up with what you believe to be
a reasonably accurate plot of the true solution for 0£ x £ 7.

a = 0;
b = 7;
starter = 0.5;
y@aD = starter;
beginner = 8a, y @aD<;

Clear @x, y, next, jump, iterations, point, k D;

jump @iterations_ D : =
b - a

��������������������������������
iterations

;

next @8x_, y_ <, iterations_ D : =
8x, y < + jump @iterations D 81, y H3 + 3 Sin @xD - yL<;

point @0, iterations_ D = beginner;
point @k_, iterations_ D : =

point @k, iterations D = N@next @point @k - 1, iterations D, iterations DD;

Clear @Euler D;

Euler @iterations_ D : = ShowAGraphics @8Thickness @0.01 D, Red,

Line @Table @point @k, iterations D, 8k, 0, iterations <DD<D,

PlotRange ® All, Axes ® True,
AxesOrigin ® beginner, AxesLabel ® 8"x", "Euler fake" <,
PlotLabel ® iterations " iterations",

AspectRatio ®
1
�����
2

, DisplayFunction ® Identity E;

primitive = Show@Euler @13D, DisplayFunction ® $DisplayFunction D;

1 2 3 4 5 6 7
x

1

2

3

4

5

6

7

Euler fake 13 iterations

A primitive stick figure resulting from 13 iterations.
Here's what you get with 15 iterations:

better = Show@Euler @15D, DisplayFunction ® $DisplayFunction D;

1 2 3 4 5 6 7
x

1

2

3

4

5

6

Euler fake 15 iterations

Experiment with more and more iterations until you are satisfied with
the Euler fake plot of the solution of this diffeq.

áG.6.a.ii)

Here is Mathematica's NDSolve instruction at work to come up with a
good approximate plot of the solution of
 y'@xD = y@xD H3 + 3 Sin@xD - y@xDL
 with y@0D = starter= 0.5,
the same diffeq as you worked with in part i):

Clear @solution, x, y, fakey D;
solution = NDSolve @

8y ¢@xD == y@xD H3 + 3 Sin @xD - y@xDL, y @0D == starter <, y @xD, 8x, a, b <D;
fakey @x_D = y@xD �. solution P1T;

masterfakeplot =

Plot Afakey @xD, 8x, a, b <, PlotStyle ® 88Blue, Thickness @0.01 D<<,

AxesLabel ® 8"x", "y @xD" <, AxesOrigin ® 8a, starter <,

PlotRange ® All, AspectRatio ®
1
�����
2

, PlotLabel ® "Master forgery" E;

1 2 3 4 5 6 7
x

1

2

3

4

5

6

y@xD Master forgery

Discuss how this plot compares with the plot you came up with in part
i).

áG.6.a.iii)

Then take another look at the differential equation
 y'@xD = y@xD H3 + 3 Sin@xD - y@xDL
 and then take a look at this plot of 3+ 3 Sin@xD:

Clear @xD;

auxillaryplot = Plot A3 + 3 Sin @xD, 8x, a, b <, AspectRatio ®
1
�����
2

,

PlotStyle ® 88Thickness @0.01 D, VioletRed <<E;

1 2 3 4 5 6 7

1

2

3

4

5

6

Here is this auxillary plot shown with the master fake plot:
Show@masterfakeplot, auxillaryplot, AxesLabel ® 8"x", "" <,

PlotLabel ® "Both" D;

DE.04.G6®G7

1 2 3 4 5 6 7
x

0

1

2

3

4

5

6
Both

Now take another look at the differential equation
 y'@xD = y@xD H3 + 3 Sin@xD - y@xDL
and explain why it is automatic that:
When the solution curve is below the plotted 3+ 3 Sin@xD curve, the
solution curve is going up.
When the solution curve is above the 3+ 3 Sin@xD curve, the solution
curve is going down.

G.7) Lanchester's war model
The first scientist who tried to apply calculus to warfare in the way
you will see below was F. W. Lanchester, who worked in Britain during

World War I. In his honor, fancy folks call all these models by the name
Lanchesterian models.

áG.7.a)

The good guys and the bad guys are engaged in combat. Agree that
good@tD is the number of good guys still fighting t days after combat
begins, and let bad@tD be the number of bad guys still fighting t days
after combat begins.
If neither side receives reinforcing troops, then why is it natural to
propose a model
 good'@tD = - a bad@tD
 bad'@tD = - b good@tD
where a and b are positive numbers?

100

áG.7.b.i)

If the good guys bring in new troops at a rate of f@tD new troops per
day and the bad guys bring in new troops at a rate of g@tD new troops
per day, then why is it natural to propose a model
 good'@tD = - a bad@tD + f @tD
 bad'@tD = - b good@tD + g@tD
where a and b are positive numbers?

áG.7.b.ii)

Agree that the good guys win if bad@tD becomes 0 before good@tD
becomes 0 and that the bad guys win if good@tD becomes 0 before
bad@tD becomes 0.

The model
 good'@tD = - 0.5 bad@tD + Sin@tD2
 bad'@tD = - 0.5 good@tD + Cos@tD2
 with good@0D = bad@0D = 2
suggests the situation in which the troops on both sides are equally
effective and at the start (t= 0) they are of equal strength. The main
difference is that the reinforcement rates are out of phase, with the bad
guys holding the initial advantage because
 Cos@0D 2 = 1 > 0 = Sin@0D 2

This suggests that the good guys lose.
Check it out:

endtime = 8;
a = -0.5;
b = -0.5;

Clear @good, bad, t D;
approxsolutions =

NDSolve @8good ¢@t D == a bad @t D + Sin @t D2 , bad ¢@t D == b good @t D + Cos@t D2 ,
good @0D == 2, bad @0D == 2<, 8good @t D, bad @t D<, 8t, 0, endtime <D;

good @t_ D = good @t D �. approxsolutions P1T;
bad@t_ D = bad@t D �. approxsolutions P1T;

warplot = Plot @8good @t D, bad @t D<, 8t, 0, endtime <,

PlotStyle ® 88Blue, Thickness @0.015 D<, 8Red, Thickness @0.015 D<<,
PlotRange ® 80, 4 <, AxesLabel ® 8"t", "troops" <,
PlotLegend ® 8"good", "bad" <, LegendSize ® 0.5 D;

2 4 6 8
t

0.5
1

1.5
2

2.5
3

3.5
4

troops

bad

good

Sure enough!
The bad guys beat the daylights out of the good guys. The good guys
are off the battlefield in about 6 days.
But the good guys are not so stupid. They ran the model and saw that
their reinfocement rate was not enough. They react by doubling their
reinforcement rate. This gives the model:
 good'@tD = - 0.5 bad@tD + 2 Sin@tD 2

 bad'@tD = - 0.5 good@tD + Cos@tD 2

 with good@0D = bad@0D = 2.
Who wins and how long does the battle last?

áG.7.b.iii)

This time the good guys have antiquated ammunition and heavy
bureaucratic problems. As a result, their troops are only half as
effective as the troops of the bad guys.
This suggests the model:
 good'@tD = -0.5 bad@tD + 2 Sin@tD 2

 bad'@tD = -0.25 good@tD + Cos@tD 2

 with good@0D = bad@0D = 2.
Who wins and how long does the battle last?

áG.7.b.iv)

Again the good guys have antiquated ammunition and heavy
bureaucratic problems. As a result, their troops are only half as
effective as the troops of the bad guys, so they decide to find a
positive number r as small as practical such that if
 good'@tD = - 0.5 bad@tD + r Sin@tD 2

 bad'@tD = - 0.25 good@tD + Cos@tD 2

 with good@0D = bad@0D = 2,
then the good guys do not lose during the first 15 days.
Estimate how small r can be.

áTip:

Experiment with different r's.

áG.7.c.i) Iwo Jima
The authors are pleased to acknowledge

the heavy influence of the book
Differential Equations and Their Applications

by Martin Braun, Springer-Verlag, 1978.
If you like this stuff, you'll want to look at this book,

paying special attention to section 4.3.

Iwo Jima is the largest of the volcano islands in the western Pacific
Ocean. During World War II, it was a big Japanese air base. During
February and March, 1945, American marines took it at great cost in a
bloody assault. If you have been to Washington, D.C., you may have
seen the Iwo Jima memorial statue which depicts U.S. Marines
planting the Stars and Stripes on the beach during a very bloody stage
of the battle.
The Americans kept careful records of their losses, and the records
confirm that the Iwo Jima battle is correctly modeled by the ideas in
the Lanchesterian model above.

Here comes the nitty-gritty:
Agree that usa@tD measures the number of active American troops and
japan@tD measures the number of active Japanese troops engaged in the
battle t days after the battle began.
For this battle, military scientists have arrived at the model

DE.04.G7

 usa'@tD = -0.0544 japan@tD + f @tD
 japan'@tD = -0.0106 usa@tD + g@tD
where f@tD and g@tD are the reinforcement rates.

The individual Japanese troop was 5 times more effective
than the individual American troop because the

Japanese held a defensive position.

At the beginning of the battle,
 usa@0D = 5.4 and japan@0D = 2.15
with units measured in tens of thousands.
The reinforcement rate for Japan was
 g@tD = 0.
There were no Japanese reinforcements.

Clear @g, t D;
g@t_ D = 0

0

The Americans piled in 5.4 (tens of thousands of) troops at the
beginning of the battle (t= 0), 0 extra troops during the first and
second day, 0.6 troops spread out over the third day, 0 troops during
the fourth and fifth days, 1.3 troops spread out over the sixth day, and
no other reinforcements.

Remember that troops are measured in tens of thousands.

Here is a plot of f@tD:
Clear @f, t D;
f @t_ D : = 0.0 �; t < 2;
f @t_ D : = 0.6 �; 2 £ t £ 3;
f @t_ D : = 0.0 �; 3 < t < 5;
f @t_ D : = 1.3 �; 5 £ t £ 6;
f @t_ D : = 0.0 �; 6 < t;

Plot Af @t D, 8t, 0, 8 <, PlotStyle ® 88Thickness @0.015 D, Blue <<,

AxesLabel ® 8"day", "USA reinforce rate" <, PlotRange ® All,

AspectRatio ®
1
�����
2
E;

101

2 4 6 8
day

0.2

0.4

0.6

0.8

1

1.2

USA reinforce rate

The Americans considered the island secure after 28 days of battle.
Replay the battle of Iwo Jima by giving plots of usa@tD and japan@tD for
the first 28 days.

áG.7.c.ii)

In actuality, there were 5.28 (tens of thousands) American troops in
the field on day 28. Compare this with the value predicted by the
model.

áTip:

Don't expect the model to be totally accurate. There is always a gap

between models and reality. If you got a big discrepancy, then you did

something wrong.

áG.7.c.iii)

Estimate:
How many American troops were knocked out of action?
How many Japanese troops bit the dust?

G.8) More on the predator-prey model

áG.8.a.i)

Here is what happens in the predator-prey model for the sample
choice of proportionality constants
 a= 0.15, b = 0.07, c = 0.36, and d= 0.04
with the prey starting off with a population of 18 units and the
predators starting out with a population of 3 units.

endtime = 60;
a = 0.15;
b = 0.07;
c = 0.36;
d = 0.04;
Clear @pred, prey, t D;
approxsolutions =

NDSolve @8prey ¢@t D == a prey @t D - b prey @t D pred @t D, pred ¢@t D ==
-c pred @t D + d pred @t D prey @t D, prey @0D == 18, pred @0D == 3<,

8prey @t D, pred @t D<, 8t, 0, endtime <D;
pred @t_ D = pred @t D �. approxsolutions P1T;
prey @t_ D = prey @t D �. approxsolutions P1T;

predpreyplot = Plot @8prey @t D, pred @t D<, 8t, 0, endtime <,
PlotStyle ® 88Blue, Thickness @0.02 D<, 8Red, Thickness @0.01 D<<,
PlotRange ® All, AxesLabel ® 8"t", "" <D;

10 20 30 40 50 60
t

2.5
5

7.5
10

12.5
15

17.5

Here is what you get when you add to the plot the horizontal line that
hits the vertical axis at c�����d :

ShowApredpreyplot, Graphics ALine A990,
c
�����
d
=, 9endtime,

c
�����
d
==EEE;

10 20 30 40 50 60
t

2.5
5

7.5
10

12.5
15

17.5

The plot of the prey population is thicker than the plot of the predator
population.

Inspect the plot; then describe what you see and explain why you see
it.

G.8.a.ii)
Here is what happens in the predator-prey model for the same
proportionality constants
 a= 0.15, b = 0.07, c = 0.36, and d= 0.04
as in part i) but with the prey starting off with a population of c�����d units
and the predators starting out with a population of a�����b units.

endtime = 20;
a = 0.15;
b = 0.07;
c = 0.36;
d = 0.04;
Clear @pred, prey, t D;
approxsolutions =

NDSolve A9prey ¢@t D == a prey @t D - b prey @t D pred @t D, pred ¢@t D ==

-c pred @t D + d pred @t D prey @t D, prey @0D ==
c
�����
d

, pred @0D ==
a
�����
b
=,

8prey @t D, pred @t D<, 8t, 0, endtime <E;

pred @t_ D = pred @t D �. approxsolutions P1T;
prey @t_ D = prey @t D �. approxsolutions P1T;

predpreyplot = Plot @8prey @t D, pred @t D<, 8t, 0, endtime <,
PlotStyle ® 88Blue, Thickness @0.02 D<, 8Red, Thickness @0.01 D<<,
PlotRange ® All, AxesLabel ® 8"t", "" <D;

5 10 15 20
t

3
4
5
6
7
8
9

Fancy folks call this "equilibrium."
Play with other choices of a, b, c, and d.
Try to explain why this happened.

DE.04.G7®G8

G.8.a.iii)
Here is what happens in the predator-prey model for the same
proportionality constants
 a= 0.15, b = 0.07, c = 0.36, and d= 0.04
as in part i) but with the prey starting off with a population of c�����d + 0.1
units and the predators starting out with a population of a�����b + 0.1 units.

endtime = 60;
a = 0.15;
b = 0.07;
c = 0.36;
d = 0.04;
Clear @pred, prey, t D;

approxsolutions = NDSolve A9prey ¢@t D == a prey @t D - b prey @t D pred @t D,

pred ¢@t D == -c pred @t D + d pred @t D prey @t D,

prey @0D ==
c
�����
d

+ 0.1, pred @0D ==
a
�����
b

+ 0.1 =,

8prey @t D, pred @t D<, 8t, 0, endtime <E;

pred @t_ D = pred @t D �. approxsolutions P1T;
prey @t_ D = prey @t D �. approxsolutions P1T;

predpreyplot = Plot A8prey @t D, pred @t D<, 8t, 0, endtime <,

PlotStyle ® 88Blue, Thickness @0.02 D<, 8Red, Thickness @0.01 D<<,

PlotRange ® All, AxesLabel ® 8"t", "" <, AspectRatio ®
1

�����������������������������������
GoldenRatio

E;

10 20 30 40 50 60
t

3

4

5

6

7

8

9

Got any idea why this happened?

102

G.8.b)
Stay with the same predator-prey model as above. But start with
 prey@0D = c�����d + h,
 pred@0D = a�����b + h

h = 0.6;
endtime = 40;

Clear @pred, prey, t D;
approxsolutions =

NDSolve A9prey' @t D == a prey @t D - b prey @t D pred @t D,

pred' @t D == -c pred @t D + d pred @t D prey @t D,

prey @0D ==
c
�����
d

+ h,

pred @0D ==
a
�����
b

+ h=,

8prey @t D, pred @t D<, 8t, 0, endtime <E;

Clear @fakepred, fakeprey D;
pred @t_ D = pred @t D �. approxsolutions @@1DD;

prey @t_ D = prey @t D �. approxsolutions @@1DD;

ParametricPlot A8prey @t D, pred @t D<,

8t, 0, endtime <, PlotStyle -> 88Blue, Thickness @0.01 D<<,
PlotRange -> All,
AxesLabel -> 8"prey", "predator" <,

AxesOrigin -> 9 c
�����
d

,
a
�����
b
=E;

7.5 8 8.5 9.5 10 10.5
prey

1.6

1.8

2

2.2

2.4

2.6

2.8

predator

Why was it a good idea to put the AxesOrigin at8 a�����b , c�����d <?
Reducing the size of h has what effect on the fluctuations of the two
populations? What happens when you make h= 0.01?

How about h= 0?
Try to explain, in your own terms, why this turned out the way it did.

áTip:

As you plot, pay special attention to the numbers along the axes.

áG.8.c.i)
The authors are pleased to acknowledge that the idea for this
problem came from the book Elementary Differential Equations

by William Boyce and Richard DiPrima (Wiley, New York, 1977). These
gentlemen wrote a really good book. You should be able to find it in

your school's library.

Most folks call the populations
 prey= c�����d and predators= a�����b
for the predator-prey model
 prey'@tD = a prey@tD - b prey@tD pred@tD
 pred'@tD = -c pred@tD + d pred@tD prey@tD
that you worked with above by the name "equilibrium populations."

Imagine that the prey are insects and that the predators are birds or
fish. The government goes into action, spreading an insecticide like
DDT all over the place. The insecticide kills both predator and prey
in proportion to their current population, so the new model becomes:
 prey'@tD = a prey@tD - b prey@tD pred@tD - u prey@tD
 pred'@tD = -c pred@tD + d pred@tD prey@tD - v pred@tD
where a, b, c, d, u,and v are all positive constants.

This is the same as
 prey'@tD = Ha - uL prey@tD - b prey@tD pred@tD
 pred'@tD = -Hc + vL pred@tD + d pred@tD prey@tD

What are the new equilibrium populations?
How do these new equilibrium populations tell you that the net effect
of the government action was to raise the equilbrium population of the
prey (insects) but to lower the equilibrium population of the predators?
Is that what the government had in mind?

áTip:

You don't need the machine for this one.

áG.8.c.ii)

In the Tutorials, you saw a rationale for looking at the differential
equations
 prey'@tD = a prey@tD - b prey@tD pred@tD
 pred'@tD = -c pred@tD + d pred@tD prey@tD
for modeling the predator-prey relationship. These differential
equations are not carved in marble. In fact, current literature pays
attention to trying to modify these equations to make them more
realistic.

See J. D. Murray, Mathematical Biology,
Springer-Verlag, New York, 1990, page 71.

 For example, you can decide to replace the second equation by
 pred'@tD = -c pred@tD �prey@tD + d pred@tD prey@tD.
Rationale:
It's reasonable to assume that the birth rate of the predators is
proportional both to the current number of the predators and the size
of the food supply, and the death rate of the predators is likely to be
directly proportional to the current population of predators and
inversely proportional to the number of prey.
Here's a try:

endtime = 30;
a = 0.5;
b = 0.3;
c = 0.6;
d = 0.2;
Clear @pred, prey, t D;
approxsolutions =

NDSolve A9prey ¢@t D == a prey @t D - b prey @t D pred @t D, pred ¢@t D ==

-
c pred @t D
���������������������������

prey @t D
+ d pred @t D prey @t D, prey @0D == 5, pred @0D == 3=,

8prey @t D, pred @t D<, 8t, 0, endtime <E;

Clear @fakepred, fakeprey D
pred @t_ D = pred @t D �. approxsolutions P1T;
prey @t_ D = prey @t D �. approxsolutions P1T;

DE.04.G8

ParametricPlot A8prey @t D, pred @t D<, 8t, 0, endtime <,

PlotStyle ® 88Thickness @0.01 D, DarkGreen <<, PlotRange ® All,

AxesLabel ® 8"prey", "predator" <, AxesOrigin ® 9 c
�����
d

,
a
�����
b
=E;

1 2 4 5 prey

1

2

3

4

5

predator

Come up with the equillibrium populations in this model and reset the
axes origin accordingly.

áTip:

Look at

 0 = a prey@tD - b prey@tD pred@tD
 = prey@tD Ha - b pred@tDL.
And look at

 0 = - c����������������prey@tD + d prey@tD
 =H-c + d prey@tD L2���prey@tD .

Don't be afraid to take a square root.

103

G.9) Drinking versus driving

áG.9.a)

Melanie, a female student weighing 125 pounds, drives to the party
with the idea of nursing three 12- ounce beers for the first hour and
then nursing two 12- ounce beers each hour for the next three hours.
If she starts with no alcohol in her system, how many grams of
alcohol are there in each liter of her body fluids at the end of the four
hours?
After the four hours, about how long must she go without drinking
alcohol in order to reduce her body fluid alcohol concentration to a
legal driving level of under 0.8 grams����������������������li ter ?
Each 12- ounce beer Melanie is drinking contains 13.0 grams of
alcohol.

áTip:

If you don't use a plot of a solution of a differential equation to do this,

you are doing too much work.

Activate the following cell before you try to convert Melanie's weight

into kilograms:
Needs@"Miscellaneous`Units`" D

áG.9.b)
The authors thank Junior L. Duitsman, owner of Duitsman Construction

Company, St. Joseph, Illinois for asking this question.

On your way home, you stop at a local pub and gradually drink
12- ounce regular beers for one hour with the intention of driving
home immediately at the end of the hour.
Estimate the greatest number of beers you can drink during this hour
and remain a legal driver in your state.

áTip:

Use your own weight and sex.

Activate the following cell before you try to convert Melanie's weight

into kilograms:
Needs@"Miscellaneous`Units`" D

To estimate your body fluids, multiply your kilogram weight by 0.65 if

you are female and you are in good shape and multiply your kilogram

weight by 0.68 weight into kilograms if you are male and in good

shape. If your are fat, use lower multipliers.

DE.04.G9

104

